Original Article
  • Comprehensive Analysis of Broadband Electromagnetic Interference Shielding Performance and Mechanisms of Recycled CF-reinforced PA6 Composites
  • Gahyun Woo*, **, ***,#, Jaehoo Kim*,#, Jong Hyuk Park*, Hae-Seok Lee***, Ung Lee**, ***† , Jaewoo Kim*, ****†

  • * Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
    ** Korea Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
    *** Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (Green School), Korea University, Seoul 02841, Korea
    **** Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju 55324, Korea

  • Recycled CF 기반 PA6 복합소재의 광대역 전자파 차폐 성능 및 메커니즘 심층 분석
  • 우가현*, **, ***,# · 김재후*,# · 박종혁* · 이해석*** · 이웅**, ***† · 김재우*, ****†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The rapid advancement of high-frequency communication technologies and the miniaturization of electronic devices have exacerbated electromagnetic interference (EMI) issues, reducing system reliability and performance. Conductive thermoplastic composites with low weight and excellent processability have emerged as promising candidates for next-generation EMI shielding materials. In this study, with a focus on environmental sustainability, recycled carbon fiber (rCF) was used as a conductive filler and polyamide 6 (PA6) as the matrix to fabricate rCF/PA6 composites via compression molding. As the rCF content increased from 10 to 30 wt%, electrical conductivity and EMI shielding effectiveness (SE) improved by approximately 46-fold and 4.9-fold, respectively. At 30 wt% rCF, the composite achieved a maximum SE of 43 dB in the X-band, far exceeding the commercial standard of 20 dB. Analysis of the shielding mechanism revealed that both SEA and SER improved with increasing filler content, confirming a reflection-dominant shielding mechanism. Further analyses of permittivity, loss tangent, skin depth, and impedance matching provided comprehensive insight into the electromagnetic shielding mechanism. These results demonstrate that rCF/PA6 composites offer excellent EMI shielding performance under high-frequency conditions while maintaining low weight, high reliability, and environmental sustainability, providing promising solutions for future mobility applications.


고주파 통신 기술의 급속한 발전과 전자기기 소형화는 전자기파 간섭(EMI) 문제를 심화시키며, 시스템의 신뢰성과 성능 저하를 초래하고 있다. 이에 경량성과 가공성이 우수한 열가소성 수지 기반의 전도성 복합소재가 차세대 EMI 차폐소재로 주목받고 있다. 본 연구에서는 환경적 지속가능성을 고려하여 재활용 탄소섬유(rCF)를 전도성 첨가제로, 폴리아미드 6(PA6)를 매트릭스로 활용한 rCF/PA6 복합소재를 압축성형 공정을 통해 제조하였다. rCF 함량이 10, 20, 30 wt%로 증가함에 따라 전기전도도는 약 46배, 전자파 차폐 효율(SE)는 약 4.9배 향상되었으며, 30 wt% 시편은 X-band에서 최대 43 dB의 차폐효과를 나타내어 상업용 기준(20 dB)을 초과하였다. 차폐 메커니즘을 분석 결과 흡수(SEA) 및 반사(SER) 성능 모두 첨가제 함량 증가에 따라 향상되었고 주된 차폐 메커니즘은 반사에 기반함을 확인하였다. 나아가, 복소 유전율, 손실 탄젠트, 표면 깊이, 및 임피던스 정합 분석을 통해 복합소재의 전자기파 차폐 거동을 심층적으로 고찰하였다. 본 연구 결과는 rCF/PA6 복합소재가 고주파 환경에서 우수한 EMI 차폐 성능과 경량화, 고신뢰성, 친환경성을 갖추어 미래 모빌리티 분야에 활용 가능함을 제시한다.


Keywords: 재활용 탄소섬유(Recycled carbon fiber), 탄소섬유 강화 열가소성 수지 복합재(Carbon fiber reinforced thermoplastic composites), 전자기파 차폐(Electromagnetic interference shielding), 지속가능성(Sustainability)

This Article

Correspondence to

  • Ung Lee**, *** , Jaewoo Kim*, ****
  • * Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
    ** Korea Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
    *** Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (Green School), Korea University, Seoul 02841, Korea
    **** Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju 55324, Korea

  • E-mail: ulee@kist.re.kr, jaewoo96@kist.re.kr