Eun-Seo Cho*, **, Min-Woo Kang*, Min-Su Kim*, Donghyun Lee*, Junghwan Kim*, Seungmun Jung***, Young-Bum Chun***, Sang-Bok Lee*, Yangdo Kim**, Seungchan Cho*†
* Composites & Convergence Materials Research Division, Korea Institute of Materials Science, Changwon, Korea
** School of Materials Science and Engineering, Pusan National University, Busan, Korea
*** Materials Safety Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, Korea
조은서*, ** · 강민우* · 김민수* · 이동현* · 김정환* · 정승문*** · 천영범*** · 이상복* · 김양도** · 조승찬*†
This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
With the expanding applications of radiation technology, the risks associated with thermal neutrons have become increasingly prominent, particularly as the storage capacity for Spent Nuclear Fuel (SNF) approaches saturation, necessitating efficient management of SNF transportation and storage casks. In this study, to overcome the limitation of reduced thermal conductivity with increasing B4C content in conventional boron carbide/aluminum (B4C/Al) composites used as thermal neutron absorbers for SNF shielding, cubic boron nitride (cBN), which possesses both strong neutron absorption capability and high thermal conductivity, was employed as a reinforcing in Al matrix composites. The composites were fabricated using spark plasma sintering (SPS), and the effects of cBN particle size on thermal conductivity and thermal neutron absorption were investigated. The results revealed that larger cBN particles enhanced thermal conductivity due to reduced interfacial thermal resistance, while exhibiting a slight decrease in neutron absorption. This behavior was attributed to differences in interfacial characteristics and neutron interaction mechanisms depending on particle size. Furthermore, theoretical models were applied to predict the variations in thermal conductivity with particle size, and the predictions were compared with experimental results to validate their reliability. These findings demonstrate the potential of cBN/Al composites as advanced neutron-absorbing materials for application in SNF transportation and storage casks.
방사선 기술의 활용이 확대됨에 따라 열중성자의 위험성이 부각되고 있으며, 특히 사용후핵연료(Spent Nuclear Fuel, SNF)의 저장공간이 포화상태에 가까워짐에 따라 SNF 운반/저장 용기에 효율적인 관리가 요구된다. 본 연구에서는 현재 SNF 차폐 소재로 사용되는 열중성자 흡수용 탄화붕소/알루미늄(B4C/Al) 복합재료의 B4C 체적률 증가에 따른 열전도도 저하 문제를 극복하기 위해, B4C 대신 열중성자 흡수능과 우수한 열전도도를 가지는 입방정 질화붕소(cBN)를 강화재로 대체하여 Al 기지 복합재료를 제조하고 평가를 진행하였다. 복합재료는 방전 플라즈마 소결(Spark Plasma Sintering, SPS) 공정을 통해 제조하였으며, cBN 입자크기가 열전도도 및 열중성자 흡수능에 미치는 영향을 분석하였다. 열전도도 측정 결과, cBN 입자 크기가 커질수록 열전도도가 증가하고 열중성자 흡수능은 감소하는 경향을 나타내었다. 이는 입자 크기에 따른 계면 열 저항 특성과 열중성자 상호작용 메커니즘 차이에 기인하는 것으로 해석된다. 또한, 이론 계산 모델을 활용하여 입자 크기에 따른 열전도도의 변화를 예측하고 측정 결과와 비교 분석함으로써, 측정 결과의 신뢰성을 검증하였다. 본 연구 결과를 바탕으로, 운송/저장 용기에 적용될 고성능 중성자 흡수소재의 개발에 기여할 수 있을 것으로 기대된다.
Keywords: 금속복합재료(Metal matrix composite), 열전도도(Thermal conductivity), 열중성자 감쇠(Thermal neutron attenuation), 방전 플라즈마 소결(Spark plasma sintering)
This Article2025; 38(6): 630-635
Published on Dec 31, 2025
Correspondence toComposites & Convergence Materials Research Division, Korea Institute of Materials Science, Changwon, Korea