Original Article
  • Fabrication and Characterization of Self-Assembled Polyacrylic Acid/Polyaniline Multilayer Free-Standing Composite Electrodes Based on Non-Wood Cellulose Nanofibers
  • Jeong-Woo Kim*, Woo Jeong Kim*, Seungmin Yu**, Oh Hun Kwon***, Seung Geun Kim****, Dong Hun Kim****, Byoung-Suhk Kim*, **, *****†

  • * Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
    ** Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea
    *** Korea Institute of Convergence Textile, Iksan 54588, Republic of Korea
    **** Jirisan Hanji Paper Co., Ltd., Namwon 55727, Republic of Korea
    ***** Department of Organic Materials & Textile Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

  • 비목재 셀룰로오스 나노섬유 기반의 프리스탠딩 전극용 Polyacrylic acid/Polyaniline 다층자기조립 복합재 제조 및 특성
  • 김정우* · 김우정* · 유승민** · 권오훈*** · 김승근**** · 김동훈**** · 김병석*, **, *****†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


Abstract

With the increasing demand for next-generation flexible electronic devices, such as personalized mobility devices, wearable electronics, and intelligent bionic systems, there is growing interest in lightweight, stretchable, and sustainable materials. In particular, cellulose-based nanocomposites with biodegradability and biocompatibility are emerging as eco-friendly and high-performance materials. In this study, cellulose nanofibers (CNFs) were extracted from non-wood natural resources—bamboo (BO) and mulberry fiber (MF)—via chemical and mechanical treatment processes, and subsequently fabricated into flexible and transparent nanocellulose films through a filtration method. A comparison between mulberry pulp and bamboo pulp was conducted to investigate their differences in CNF formation. Subsequently, a conductive multilayer film, (PAA/PANi)n/CNF, was formed on the CNF surface by alternately depositing positively charged polyaniline (PANi) and negatively charged polyacrylic acid (PAA) via a Layer-by-Layer (LbL) self-assembly technique. UV–vis spectroscopy revealed that the absorbance increased with the number of (PAA/PANi)n bilayers, indicating successful formation of the conductive multilayer films. Furthermore, when employed as a free-standing (PAA/PANi)n/CNF electrode in a neutral electrolyte (1 M Na2SO4), Faradaic redox reactions associated with the oxidation and reduction of PANi were observed. The areal capacitances measured at a current density of 50 μA cm-2 were 11.4 mF cm-2 for (PAA/PANi)n/BO-CNF and 7.3 mF cm-2 for (PAA/PANi)n/MF-CNF, respectively.


최근 개인 맞춤형 이동장치, 웨어러블 디바이스, 지능형 바이오닉 시스템 등 차세대 유연 전자기기의 수요 증가에 따라, 가볍고 신축성 있으며 지속 가능한 소재에 대한 관심이 높아지고 있다. 특히, 생분해성과 생체적합성을 지닌 셀룰로오스 기반 나노복합재는 친환경 고기능성 소재로 주목받고 있다. 본 연구에서는 비목재계 천연자원인 대나무(bamboo, BO)와 닥섬유(mulberry fiber, MF)로부터 화학적 및 기계적 전처리를 통해 셀룰로오스 나노섬유(cellulose nanofiber, CNF)를 추출하고, 여과 공정을 통해 유연하고 투명한 CNF 필름으로 제조하였다. 원재료 종류에 따른 CNF 필름의 섬유 직경 차이를 조사하고 원재료별 가장 나노화가 잘 된 샘플을 1개씩 선택하였다(BO-CNF, MF-CNF). 이후, 양전하를 갖는 폴리아닐린(polyaniline, PANi)과 음전하를 띠는 폴리아크릴산(polyacrylic acid, PAA)을 Layer-by-Layer (LbL) 자기조립 방식으로 교대 적층하여, CNF 필름 표면에 전도성 다층박막(PAA/PANi)n을 코팅하였다. 자외선-가시광선(UV-vis) 분광 분석을 통해 (PAA/PANi)n의 코팅 수가 증가함에 따른 흡광도가 증가함으로써, (PAA/PANi)n 층이 잘 형성된 것을 확인하였다. 또한 free-standing (PAA/PANi)n/CNF 전극물질로써, 중성 전해질(1M Na2SO4)에서 PANi의 산화×환원에 의한 패러데이(redox) 반응이 관찰되었으며 비정전용량은 50 μA cm-2의 전류 밀도에서 각각 11.4 mF cm-2 ((PAA/PANi)n/BO-CNF), 7.3 mF cm-2 ((PAA/PANi)n/MF-CNF)를 나타내었다.


Keywords: 셀룰로오스 나노섬유(Cellulose nanofiber), 폴리아닐린(Polyaniline), 폴리아크릴산(Polyacrylic acid), 다층자가조립법(Layer-by-layer self-assembly), 프리스탠딩 전극(Free-standing electrode)

This Article

Correspondence to

  • Byoung-Suhk Kim
  • * Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
    ** Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea
    ***** Department of Organic Materials & Textile Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

  • E-mail: kbsuhk@jbnu.ac.kr