Original Article
  • Development of Epoxy Composites with SWCNT for Highly Thermal Conductivity
  • Hyeonil Kim*, Heung Cho Ko**, Nam-Ho You*

  • Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST), Korea

    *† Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST), Korea

    ** School of Materials Science and Engineering, Gwangju Institute of Science and Technology(GIST), Korea

  • 고방열 재료 개발을 위한 에폭시/단일벽 탄소나노튜브 복합체 개발
  • 김현일* · 고흥조** · 유남호*

References
  • 1. Sirringhaus, H., “25th Anniversary Article: Organic Field-effect Transistors: the Path Beyond Amorphous Silicon,” Journal of Com-posite Materials, Vol. 26, No. 9, 2014, pp. 1319-1335.
  •  
  • 2. You, J.B., Dou, L.T., Hong, Z.R., Li, G., and Yang, Y., “Recent Trends in Polymer Tandem Solar Cells Research,” Progress in Poly-mer Science, Vol. 38, No. 12, 2013, pp. 1909-1928.
  •  
  • 3. Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwodiauer, R., Graz, I., Bau-er-Gogonea, S., Bauer, S., and Someya, T., “An Ultra-lightweight Design for Imperceptible Plastic Electronics,” Nature, Vol. 499, No. 7459, 2013, pp. 458-463.
  •  
  • 4. Chen, S.C., Wan, C.C., and Wang, Y.Y., “Thermal Analysis of Lithium-ion Batteries,” Journal of Power Sources, Vol. 140, No. 1, 2005, pp. 111-124.
  •  
  • 5. Kizilel, R., Sabbah, R., Selman, J.R., and Al-Hallaj, S., “An Alternative Cooling System to Enhance the Safety of Li-ion Battery Packs,” Journal of Power Sources, Vol. 194, No. 2, 2009, pp. 1105-1112.
  •  
  • 6. Han, N., Cuong, T.V., Han, M., Ryu, B.D., Chandramohan, S., Park, J.B., Kang, J.H., Park, Y.J., Ko, K.B., Kim, H.Y., Kim, H.K., Ryu, J.H., Katharria, Y.S., Choi, C.J., and Hong, C.H., “Improved Heat Dissipation in Gallium Nitride Light-emitting Diodes with Embedded Graphene Oxide Pattern,” Nature Communications, Vol. 4, 2013, pp. 1452.
  •  
  • 7. Huang, X., Zhi, C., Jiang, P., Golberg, D., Bando, Y., and Tanaka, T., “Polyhedral Oligosilsesquioxane-modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity,” Advanced Functional Ma-terials, Vol. 23, No. 14, 2013, pp. 1824-1831.
  •  
  • 8. Hsiao, M.C., Ma, C.C., Chiang, J.C., Ho, K.K., Chou, T.Y., Xie, X., Tsai, C.H., Chang, L.H., and Hsieh, C.K., “Thermally Conduc-tive and Electrically Insulating Epoxy Nanocomposites with Thermally Reduced Graphene Oxide-silica Hybrid Nanosheets,” Na-noscale, Vol. 5, No. 13, 2013, pp. 5963-5871.
  •  
  • 9. Raza, M.A., Westwood, A.V.K., Stirling, C., and Ahmad, R., “Effect of Boron Nitride Addition on Properties of Vapour Grown Carbon Nanofiber/rubbery Epoxy Composites for Thermal Interface Applications,” Composites Science and Technology., Vol. 120, No. 4, 2015, pp. 9-16.
  •  
  • 10. Hu, Y., Du, G., and Chen, N., “A Novel Approach for Al2O3/epoxy Composites with High Strength and Thermal Conductivity,” Composites Science and Technology, Vol. 124, No. 1, 2016, pp. 36-43.
  •  
  • 11. Yu, W., Fu, J., Chen, L., Zong, P., Yin, J., Shang, D., Lu, Q., Chen, H., and Shi, L., “Enhanced Thermal Conductive Property of Epoxy Composites by low Mass Fraction of Organic–inorganic Multilayer Covalently Grafted Carbon Nanotubes,” Composites Sci-ence and Technology, Vol. 125, No. 23, 2013, pp. 116-125.
  •  
  • 12. Min, C., Yu, D.M., Cao, J.Y., Wang, G.L., and Feng, L.H., “A Graphite Nanoplatelet/epoxy Composite with High Dielectric Con-stant and High Thermal Conductivity,” Carbon, Vol. 55, 2013, pp. 116-125.
  •  
  • 13. Verma, P., Saini, P., Malik, R.S., and Choudhary, V., “Excellent Electromagnetic Interference Shielding and Mechanical Properties of High Loading Carbon-nanotubes/polymer Composites Designed Using Melt Recirculation Equipped Twin-screw Extruder,” Car-bon, Vol. 89, 2015, pp. 209-317.
  •  
  • 14. Chen, Z., Xu, C., Ma, C., Ren, W., and Cheng, H.M., “Lightweight and Flexible Graphene Foam Composites for High-performance Electromagnetic Interference Shielding,” Advanced Materials, Vol. 25, No. 9, 2013, pp. 1296-1300.
  •  
  • 15. Akatsuka, M., and Takezawa, Y., “Study of High Thermal Conductive Epoxy Resins Containing Controlled High-order Structures,” Journal of Applied Polymer Science, Vol. 89, No. 9, 2003, pp. 2464-2467.
  •  
  • 16. Xie, X., Li, D.Y., Tsai, T.H., Liu, J., Braun, P.V., and Cahill, D.G., “Thermal Conductivity, Heat Capacity, and Elastic Constants Of Water Soluble Polymers and Polymer Blends,” Macromolecules, Vol. 49, No. 3, 2016, pp. 972-978.
  •  
  • 17. Kim, C.B., Lee, J., Cho, J., and Goh, M., “Thermal Conductivity Enhancement of Reduced Graphene Oxide via Chemical Defect Healing for Efficient Heat Dissipation,” Carbon, Vol. 139, 2018, pp. 386–392.
  •  
  • 18. Lu, H., Yao, Y., Huang, W.M., Leng, J., and Hui, D., “Significantly Improving Infrared Light Induced Shape Recovery Behavior of Shape Memory Polymeric Nanocomposite via a Synergistic Effect of Carbon Nanotube and Boron Nitride,” Composites Part B: En-gineering, Vol. 62, 2014, pp. 256–261.
  •  
  • 19. Jiang, Q., Wang, X., Zhu, Y., Hui, D., and Qiu, Y., “Mechanical, Electrical and Thermal Properties of Aligned Carbon Nano-tube/Polyimide Composites,” Composites Part B: Engineering, Vol. 56, 2014, pp. 408-412.
  •  
  • 20. Zhu, H., Li, Y., Fang, Z., Xu, J., Cao, F., Wan, J., Preston, C., Yang, B., and Hu, L., “Highly Thermally Conductive Papers with Per-colative Layered Boron Nitride Nanosheets,” ACS Nano, Vol. 8, No. 4, 2014, pp. 3606–3613.
  •  
  • 21. Song, W.L., Wang, P., Cao, L., Anderson, A., Meziani, M.J., Farr, A.J., and Sun, Y.-P., “Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance”, Angewandte Chemie International Edition, Vol. 51, No. 26, 2012, pp. 6498-6501.
  •  
  • 22. Carfagna, C., Amendola, E., and Giamberini, M., “Liquid Crystalline Epoxy Based Thermosetting Polymers,” Progress in Polymer Science, Vol. 22, No. 8, 1997, pp. 1607-1647.
  •  
  • 23. Barclay, G.G., and Ober, C.K., “Liquid-crystalline and Rigid-rod Networks,” Progress in Polymer Science, Vol. 18, No. 5, 1993, pp. 899-945.
  •  
  • 24. Hoyt, A.E., and Benicewicz, B.C., “Rigid Rod Molecules as Liquid Crystal Thermosets. II. Rigid Rod Esters,” Journal of Polymer Sci-ence Part A: Polymer Chemistry, Vol. 28, No. 12, 1990, pp. 3417-3427.
  •  
  • 25. Azeez, A.A., Rhee, K.Y., Park, S.J., and Hui, D., “Epoxy Clay Nanocomposites-processing, Properties and Applications: A Review,” Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 308-320.
  •  
  • 26. Luo, F.B., Wu, K., Guo, H.L., Zhao, Q., and Lu, M.G., “Anisotropic Thermal Conductivity and Flame Retardancy of Nanocomposite Based on Mesogenic Epoxy and Reduced Graphene Oxide Bulk,” Composites Science and Technology, Vol. 124, No. 23, 2016, pp. 1-8.
  •  
  • 27. Harada, M., Ando, J., Yamaki, M., and Ochi, M., “Synthesis, Characterization, and Mechanical Properties of a Novel Terphenyl Liq-uid Crystalline Epoxy Resin,” Journal of Applied Polymer Science, Vol. 132, No. 1, 2015, pp. 41296.
  •  
  • 28. Yamamoto, H., Fujita, A., Harada, M., and Ochi, M., “Synthesis and Characterization of Novel Liquid Crystalline Epoxy Resin with Low Melting Point,” Molecular Crystals and Liquid Crystals, Vol. 588, No. 1, 2014, pp. 41-50.
  •  
  • 29. Harada, M., Hamaura, N., Ochi, M., and Agari, Y., “Thermal Conductivity of Liquid Crystalline Epoxy/BN Filler Composites Having Ordered Network Structure,” Composites Part B: Engineering, Vol. 55, 2013, pp. 306-313.
  •  
  • 30. Yeo, H., Islam, A.M., You, N.H., Ahn, S., Goh, M., Hahn, J.R., and Jang, S.G., “Characteristic Correlation between Liquid Crystal-line Epoxy and Alumina Filler on Thermal Conducting Properties,” Composites Science and Technology, Vol. 141, 2017, pp. 99-105.
  •  
  • 31. Mallakpour, S., and Zadehnazari, A., “Preparation of Dopamine-functionalized Multi-wall Carbon Nanotube/poly (amide-imide) Composites and Their Thermal and Mechanical Properties,” New Carbon Materials, Vol. 31, 2016, pp. 18-30.
  •  
  • 32. Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H., “Polymer Nanocomposites Based on Functionalized Carbon Nanotubes,” Progress in Polymer Science, Vol. 35, 2010, pp. 837-867.
  •  
  • 33. Dhall, S., and Jaggi, N., “Effect of Oxide Nanoparticles on Structural Properties of Multiwalled Carbon Nanotubes,” Theochem., Vol. 1107, 2016 pp. 300-304.
  •  
  • 34. Wei, Y., Xie, C.G., Dean, K.A., and Coll, B.F., “Stability of Carbon Nanotubes under Electric Field Studied by Scanning Electron Microscopy,” Applied Physics Letters, Vol. 79, 2001, pp. 4527-4529.
  •  

This Article

Correspondence to

  • Nam-Ho You
  • *† Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST), Korea

  • E-mail: polymer@kist.re.kr