Special Issue
  • Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester
  • Geon Su Kim*, Ji-un Jang**, Seong Yun Kim*†

  • * Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju 54896, Korea
    ** Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Korea

  • 압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토
  • 김건수* · 장지운** · 김성륜*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Le, A.T., Ahmadipour, M., and Pung, S.Y., “A Review on ZnO-Based Piezoelectric Nanogenerators: Synthesis, Characterization Techniques, Performance Enhancement and Applications,” Journal of Alloys and Compounds, Vol. 844, 2020, 156172.
  •  
  • 2. Kumar, M., Social, Economic, and Environmental Impacts of Renewable Energy Resources, Intechopen Pub. Co., London, UK, 2020.
  •  
  • 3. Huang, L., Lin, S., Xu, Z., Zhou, H., Duan, J., Hu, B., and Zhou, J., “Fiber-Based Energy Conversion Devices for Human-Body Energy Harvesting,” Advanced Materials, Vol. 32, 2020, 1902034.
  •  
  • 4. Hu, D., Yao, M., Fan, Y., Ma, C., Fan, M., and Liu, M., “Strategies to Achieve High Performance Piezoelectric Nanogenerators,” Nano Energy, Vol. 55, 2019, pp. 288-304.
  •  
  • 5. Manjón-Sanz, A.M., and Dolgos, M.R., “Applications of Piezoelectrics: Old and New,” Chemistry of Materials, Vol. 30, No. 24, 2018, pp. 8717-8984.
  •  
  • 6. Kang, M.G., Jung, W.S., Kang, C.Y., and Yoon, S.J., “Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies,” Actuators, Vol. 5, No. 1, 2016, 5.
  •  
  • 7. Zhu, G., Zeng, Z., Zhang, L., and Yan, X., “Piezoelectricity in β-Phase PVDF Crystals: A Molecular Simulation Study,” Computational Materials Science, Vol. 44, No. 2, 2008, pp. 224-229.
  •  
  • 8. Wang, Z.L., and Song, J., “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science, Vol. 312, No. 5771, 2006, pp. 242-246.
  •  
  • 9. Mason, W.P., “Piezoelectricity, Its History and Applications,” The Journal of the Acoustical Society of America, Vol. 70, 1981, 1561.
  •  
  • 10. Adhikari, S., Friswell, M.I., and Inman, D.J., “Piezoelectric Energy Harvesting from Broadband Random Vibrations,” Smart Materials and Structures, Vol. 18, No. 11, 2009, 115005.
  •  
  • 11. Yang, Z., Zhou, S., Zu, J., and Inman, D., “High-Performance Piezoelectric Energy Harvesters and Their Applications,” Joule, Vol. 2, No. 4, 2018, pp. 642-697.
  •  
  • 12. Wu, N., Bao, B., and Wang, Q., “Review on Engineering Structural Designs for Efficient Piezoelectric Energy Harvesting to Obtain High Power Output,” Engineering Structures, Vol. 235, 2021, 112068.
  •  
  • 13. Su, Y.F., Kotian, R.R., and Lu, N., “Energy Harvesting Potential of Bendable Concrete using Polymer Based Piezoelectric Generator,” Composites Part B: Engineering, Vol. 153, 2018, pp. 124-129.
  •  
  • 14. Jeong, C.Y., Joung, C.W., Lee, S.H., Feng, M.Q., and Park, Y.B., “Carbon Nanocomposite Based Mechanical Sensing and Energy Harvesting,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 7, 2020, pp. 247-267.
  •  
  • 15. Sezer, N., and Koc, M., “A Comprehensive Review on the State-of-the-art of Piezoelectric Energy Harvesting,” Nano Energy, Vol. 80, 2021, 105567.
  •  
  • 16. Kim, J.H., Loh, K.J., and Lynch, J.P., “Piezoelectric Polymeric Thin Films Tuned by Carbon Nanotube Fillers,” Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, California, USA, Apr. 2008, 693232.
  •  
  • 17. Pusty, M., Sharma, A., Sinha, L., Chaudhary, A., and Shirage, P., “Comparative Study with a Unique Arrangement to Tap Piezoelectric Output to Realize a Self-poled PVDF Based Nanocomposite for Energy Harvesting Applications,” Chemistry Select, Vol. 2, No. 9, 2017, pp. 2774-2782.
  •  
  • 18. Rajabi, A.H., Jaffe, M., and Arinzeh, T.L., “Piezoelectric Materials for Tissue Regeneration: A Review,” Acta Biomaterialia, Vol. 24, 2015, pp. 12-23.
  •  
  • 19. Anjana, J., Prashanth, K.J., Asheesh, K.S., Arpit, J., and Rashmi, P.N., “Dielectric and Piezoelectric Properties of PVDF/PZT Composites: A Review,” Polymer Engineering and Science, Vol. 55, No. 7, 2015, pp. 1589-1616.
  •  
  • 20. Siang, J., Lim, M.H., and Leong M.S., “Review of Vibration-Based Energy Harvesting Technology: Mechanism and Architectural Approach,” International Journal of Energy Research, Vol. 42, No. 5, 2018, pp. 1866-1893.
  •  
  • 21. Ryndzionek, R., Sienkiewicz, L., Michna, M., and Kutt, F., “Design and Experiments of a Piezoelectric Motor Using Three Rotating Mode Actuators,” Sensors, Vol. 19, 2019, 5184.
  •  
  • 22. Katzir, S., The Beginnings of Piezoelectricity, Springer Pub. Co., New York, USA, 2006.
  •  
  • 23. Manbachi, A., and Cobbold, R.S.C., “Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection,” Ultrasound, Vol. 19, 2011, pp. 187-196.
  •  
  • 24. Alameh, A.H., Gratuze, M., and Nabki, F., “Impact of Geometry on the Performance of Cantilever-Based Piezoelectric Vibration Energy Harvesters,” IEEE Sensors Journal, Vol. 19, No. 22, 2019, pp. 10316-10326.
  •  
  • 25. Peng, Y., Xu, Z., Wang, M., Li, Z., Peng, J., Luo, J., Xie, S., Pu, H., and Yang, Z., “Investigation of Frequency-Up Conversion Effect on the Performance Improvement of Stack-Based Piezoelectric Generators,” Renewable Energy, Vol. 172, 2021, pp. 551-563.
  •  
  • 26. Lee, H.J., Zhang, S., Bar-Cohen, Y., and Sherrit, S.T., “High Temperature, High Power Piezoelectric Composite Transducers,” Sensors, Vol. 14, 2014, pp. 14526-14552.
  •  
  • 27. Izyumskaya, N., Alivov, Y.I., Cho, S.J., Morkoç., Lee, H., and Kang, Y.S., “Processing, Structure, Properties, and Applications of PZT Thin Films,” Critical Reviews in Solid State and Materials Sciences, Vol. 32, No. 3-4, 2007, pp. 111-202.
  •  
  • 28. Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., Rossetti Jr, G.A., and Rödel, J., “BaTiO3-Based Piezoelectrics: Fundamentals, Current Status, and Perspectives,” Applied Physics Reviews, Vol. 4, 2017, 041305.
  •  
  • 29. Peng, Y., Peng, Q., and Liu, S., “Preparation of Barium Titanate Nanopowder through Thermal Decomposition of Peroxide Precursor and Its Formation Mechanism,” Chinese Journal of Chemistry, Vol. 27, No. 11, 2009, pp. 2291-2295.
  •  
  • 30. Coondoo, I., Panwar, N., Amorín, H., Alguero, M., and Kholkin, A.L., “Synthesis and Characterization of Lead-Free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Ceramic,” Journal of Applied Physics, Vol. 113, 2013, 214107.
  •  
  • 31. Zhang, G., Liao, Q., Zhang, Z., Liang, Q., Zhao, Y., Zheng, X., and Zhang, Y., “Novel Piezoelectric Paper-Based Flexible Nanogenerators Composed of BaTiO3 Nanoparticles and Bacterial Cellulose,” Advanced Science, Vol. 3, No. 2, 2016, 1500257.
  •  
  • 32. Han, W., He, H., Zhang, L., Dong, C., Zeng, H., Dai, Y., Xing, L., Zhang, Y., and Xue, X., “A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays,” ACS Applied Materials & Interfaces, Vol. 9, No. 35, 2017, pp. 29526-29537.
  •  
  • 33. Shin, S.H., Kwon, Y.H., Lee, M.H., Jung, J.Y., Seol, J.H., and Nah, J.H., “A Vanadium-Doped ZnO Nanosheets–Polymer Composite for Flexible Piezoelectric Nanogenerators,” Nanoscale, Vol. 8, No. 3, 2016, pp. 1314-1321.
  •  
  • 34. Liu, H., Zhong, J., Lee, C.K., Lee, S.W., and Lin, L., “A Comprehensive Review on Piezoelectric Energy Harvesting Technology: Materials, Mechanisms, and Applications,” Applied Physics Reviews, Vol. 5, 2018, 041306.
  •  
  • 35. Wang, X., Sun, F., Yin, C., Wang, Y., Liu, B., and Dong, M., “Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review,” Sensors, Vol. 18, 2018, 330.
  •  
  • 36. Li, C., Luo, W., Liu, X., Xu, D., and He, K., “PMN-PT/PVDF Nanocomposite for High Output Nanogenerator Applications,” Nanomaterials, Vol. 6, No. 4, 2016, 67.
  •  
  • 37. Alluri, N.R., Selvarajan, S., Chandrasekhar, A., Saravanakumar, B., Jeong, J.H., and Kim, S.J., “Piezoelectric BaTiO3/Alginate Spherical Composite Beads for Energy Harvesting and Self-Powered Wearable Flexion Sensor,” Composites Science and Technology, Vol. 142, 2017, pp. 65-78.
  •  
  • 38. Wu, J., Qin, N., and Bao, D., “Effective Enhancement of Piezocatalytic Activity of BaTiO3 Nanowires under Ultrasonic Vibration,” Nano Energy, Vol. 45, 2018, pp. 44-51.
  •  
  • 39. Shi, K., Chai, B., Zou, H., Shen, P., Sun, B., Jiang, P., Shi, Z., and Huang, X., “Interface Induced Performance Enhancement in Flexible BaTiO3/PVDF-TrFE Based Piezoelectric Nanogenerators,” Nano Energy, Vol. 80, 2021, 105515.
  •  
  • 40. Zhao, Y., Liao, Q., Zhang, G., Zhang, Z., Liang, Q., Liao, X., and Zhang, Y., “High Output Piezoelectric Nanocomposite Generators Composed of Oriented BaTiO3 NPs@PVDF,” Nano Energy, Vol. 11, 2015, pp. 719-727.
  •  
  • 41. Shin, S.H., Kim, Y.H., Lee, M.H., Jung, J.Y., and Nah, J.H., “Hemispherically Aggregated BaTiO3 Nanoparticle Composite Thin Film for High-Performance Flexible Piezoelectric Nanogenerator,” ACS Nano, Vol. 8, No. 3, 2014, pp. 2766-2773.
  •  
  • 42. Chen, X., Li, X., Shao, J., An, N., Tian, H., Wang, C., Han, T., Wang, L., and Lu, B., “High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO3 Nanocomposite Micropillars for Self-Powered Flexible Sensors,” Small, Vol. 13, No. 23, 2017, 1604245.
  •  
  • 43. Zhu, N., and West, A.R., “Formation and Stability of Ferroelectric BaTi2O5,” Journal of the American Ceramic Society, Vol. 93, No. 1, 2010, pp. 295-300.
  •  
  • 44. Fu, J., Hou, Y., Gao, X., Zheng, M., and Zhu, M., “Highly Durable Piezoelectric Energy Harvester Based on a PVDF Flexible Nanocomposite Filled with Oriented BaTi2O5 Nanorods with High Power Density,” Nano Energy, Vol. 52, 2018, pp. 391-401.
  •  
  • 45. Patra, A., Pal, A., and Sen, S., “Polyvinylpyrrolidone Modified Barium Zirconate Titanate/Polyvinylidene Fluoride Nanocomposites as Self-Powered Sensor,” Ceramics International, Vol. 44, No. 10, 2018, pp. 11196-11203.
  •  
  • 46. Kim, M.J., Wu, Y.S., Kan, E.C., and Fan, J., “Breathable and Flexible Piezoelectric ZnO@PVDF Fibrous Nanogenerator for Wearable Applications,” Polymers, Vol. 10, No. 7, 2018, 745.
  •  
  • 47. Li, Z., Zhang, X., and Li, G., “In Situ ZnO Nanowire Growth to Promote the PVDF Piezo Phase and the ZnO–PVDF Hybrid Self-Rectified Nanogenerator as a Touch Sensor,” Physical Chemistry Chemical Physics, Vol. 16, No. 12, 2014, pp. 5475-5479.
  •  
  • 48. Parangusan, H., Ponnamma, D., and Al-Maadeed, M.A.A., “Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators,” Scientific Reports, Vol. 8, 2018, 754.
  •  
  • 49. Parangusan, H., Ponnamma, D., and Al-Maadeed, M.A.A., “Flexible Tri-Layer Piezoelectric Nanogenerator Based on PVDF-HFP/Ni-Doped ZnO Nanocomposites,” RCS Advances, Vol. 7, No. 79, 2017, pp. 50156-50165.
  •  
  • 50. Newnham, R.E., Bowen, L.J., Klicker, K.A., and Cross, L.E., “Composite Piezoelectric Transducers,” Materials & Design, Vol. 2, No. 2, 1980, pp. 93-106.
  •  
  • 51. Skinner, D.P., Newnham, R.E., and Cross, L.E., “Flexible Composite Transducers,” Materials Research Bulletin, Vol. 13, No. 6, 1978, pp. 599-607.
  •  
  • 52. Klicker, K.A., Biggers, J.V., and Newnham, R.E., “Composites of PZT and Epoxy for Transducer Applications,” Journal of the American Ceramic Society, Vol. 64, No. 1, 1981, pp. 5-9.
  •  
  • 53. Zhen, Y., and Li, J.F., “Preparation and Electrical Properties of Fine-Scale 1–3 Lead Zirconic Titanate∕Epoxy Composite Thick Films for High-Frequency Ultrasonic Transducers,” Journal of Applied Physics, Vol. 103, 2008, 084119.
  •  
  • 54. Li, F., and Zuo, R., “Bismuth Sodium Titanate Based Lead-Free Ceramic/Epoxy 1–3 Composites: Fabrication and Electromechanical Properties,” Journal of Materials Science: Materials in Electronics, Vol. 25, 2014, pp. 2730-2736.
  •  
  • 55. Smith, W.A., Shaulov, A., and Auld, B.A., Tailoring the Properties of Composite Piezoelectric Materials for Medical Ultrasonic Transducers, IEEE Pub. Co., New Jersey, USA, 1985.
  •  
  • 56. Grewe, M.G., Gururaja, T.R., Shrout, T.R., and Newnham, R.E., “Acoustic Properties of Particle/Polymer Composites for Ultrasonic Transducer Backing Applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 37, No. 6, 1990, pp. 506-514.
  •  
  • 57. Han, K.H., and Roh, Y.R., “The Performance of a 1–3 Mode Piezocomposite Ultrasonic Transducer in Relation to the Properties of Its Polymer Matrix,” Sensors and Actuators, Vol. 75, 1999, pp. 176-185.
  •  
  • 58. Gao, X., Zheng, M., Yan, X., Fu, J., Zhu, M., and Hou, Y., “The Alignment of BCZT Particles in PDMS Boosts the Sensitivity and Cycling Reliability of a Flexible Piezoelectric Touch Sensor,” Journal of Materials Chemistry C, Vol. 7, 2019, pp. 961-967.
  •  
  • 59. Park, K.I., Bae, S.B., Yang, S.H., Lee, H.I., Lee, K.S., and Lee, S.J., “Lead-Free BaTiO3 Nanowires-Based Flexible Nanocomposite Generator,” Nanoscale, Vol. 6, No. 15, 2014, pp. 8962-8968.
  •  
  • 60. Alluri, N.R., Chandrasekhar, A., Vivekananthan, V., Purusothaman, Y., Selvarajan, S., Jeong, J.H., and Kim, S.J., “Scavenging Biomechanical Energy Using High-Performance, Flexible BaTiO3 Nanocube/PDMS Composite Films,” ACS Sustainable Chemistry & Engineering, Vol. 5, No. 6, 2017, pp. 4730-4738.
  •  
  • 61. Lin, Z., Yang, Y., Wu, J.M., Liu, Y., Zhang, F., and Wang, Z.L., “BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators,” The Journal of Physical Chemistry Letters, Vol. 3, No. 23, 2012, pp. 3599-3604.
  •  
  • 62. Shin, S.H., Kim, Y.H., Lee, M.H., Jung, J.Y., Seol, J.H., and Nah, J.H., “Lithium-Doped Zinc Oxide Nanowires–Polymer Composite for High Performance Flexible Piezoelectric Nanogenerator,” ACS Nano, Vol. 8, No. 10, 2014, pp. 10844-10850.
  •  
  • 63. Lee, T.I., Jang, W.S., Lee, E.K., Kim, Y.S., Wang, Z.L., Baik, H.K., and Myoung, J.M., “Ultrathin Self-Powered Artificial Skin,” Energy & Environmental Science, Vol. 7, No. 12, 2014, pp. 3994-3999.
  •  
  • 64. Ngoc, H.V., and Kang, D.J., “Flexible, Transparent and Exceptionally High Power Output Nanogenerators Based on Ultrathin ZnO Nanoflakes,” Nanoscale, Vol. 8, No. 9, 2016, pp. 5059-5066.
  •  
  • 65. Sinha, N., Goel, S., Joseph, A.J., Yadav, H., Batra, K., Gupta, M.K., and Kumar, B., “Y-Doped ZnO Nanosheets: Gigantic Piezoelectric Response for an Ultra-Sensitive Flexible Piezoelectric Nanogenerator,” Ceramics International, Vol. 44, No. 7, 2018, pp. 8582-8590.
  •  
  • 66. Pal, A., Sasmal, A., Manoj, B., Rao, DSD.P., Haldar, A.K., and Sen, S., “Enhancement in Energy Storage and Piezoelectric Performance of Three Phase (PZT/MWCNT/PVDF) Composite,” Materials Chemistry and Physics, Vol. 244, 2020, 122639.
  •  
  • 67. Guan, X., Zhang, Y., Li, H., and Ou, J., “PZT/PVDF Composites Doped with Carbon Nanotubes,” Sensors and Actuators A: Physical, Vol. 194, 2013, pp. 228-231.
  •  
  • 68. Tian, S., and Wang, X., “Fabrication and Performances of Epoxy/Multi-Walled Carbon Nanotubes/Piezoelectric Ceramic Composites as Rigid Piezo-Damping Materials,” Journal of Materials Science, Vol. 43, 2008, pp. 4979-4987.
  •  
  • 69. Kim, H.J., and Kim, Y.J., “High Performance Flexible Piezoelectric Pressure Sensor Based on CNTs-Doped 0–3 Ceramic-Epoxy Nanocomposites,” Materials & Design, Vol. 151, 2018, pp. 133-140.
  •  
  • 70. Yaqoob, U., and Chung, G.S., “Effect of Reduced Graphene Oxide on the Energy Harvesting Performance of P(VDF-TrFE)-BaTiO3 Nanocomposite Devices,” Smart Materials and Structures, Vol. 26, No. 9, 2017, 095060.
  •  
  • 71. Dudem, B., Kim, D.H., Bharat, L.K., and Yu, J.S., “Highly-Flexible Piezoelectric Nanogenerators with Silver Nanowires and Barium Titanate Embedded Composite Films for Mechanical Energy Harvesting,” Applied Energy, Vol. 230, 2018, pp. 865-874.
  •  
  • 72. Hwang, J.O., Lee, D.H., Kim, J.Y., Han, T.H., Kim, B.H., Park, M.K., No, K.S., and Kim, S.O., “Vertical ZnO Nanowires/Graphene Hybrids for Transparent and Flexible Field Emission,” Journal of Materials Chemistry, Vol. 21, No. 11, 2011, pp. 3432-3437.
  •  
  • 73. Park, K.I., Lee, M.B., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., and Lee, K.J., “Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons,” Advanced Materials, Vol. 24, No. 22, 2012, pp. 2999-3004.
  •  
  • 74. Sun, H., Tian, H., Yang, Y., Xie, D., Zhang, Y.C., Liu, X., Ma, S., Zhao, H.M., and Ren, T.L., “A Novel Flexible Nanogenerator Made of ZnO Nanoparticles and Multiwall Carbon Nanotube,” Nanoscale, Vol. 5, 2013, pp. 6117-6123.
  •  
  • 75. McCall, W.R., Kim, K.G., Heath, C., Pierre, G.L., and Sirbuly, D.J., “Piezoelectric Nanoparticle–Polymer Composite Foams,” ACS Applied Materials & Interfaces, Vol. 6, No. 22, 2014, pp. 19504-19509.
  •  
  • 76. Yan, J., and Jeong, Y.G., “Roles of Carbon Nanotube and BaTiO3 Nanofiber in the Electrical, Dielectric and Piezoelectric Properties of Flexible Nanocomposite Generators,” Composites Science and Technology, Vol. 144, 2017, pp. 1-10.
  •  
  • 77. Batra, A.K., Edwards, M.E., Alomari, A., and Elkhaldy, A., “Dielectric Behavior of P(VDF-TrFE)/PZT Nanocomposites Films Doped with Multi-walled Carbon Nanotubes (MWCNT),” American Journal of Materials Science, Vol. 5, No. 3A, 2015, pp. 55-61.
  •  
  • 78. Xia, M., Luo, C., Su, X., Li, Y., Li, P., Hu, J., Li, G., Jiang, H., and Zhang, W., “KNN/PDMS/C-Based Lead-Free Piezoelectric Composite Film for Flexible Nanogenerator,” Journal of Materials Science: Materials in Electronics, Vol. 30, 2019, pp. 7558-7566.
  •  
  • 79. Jiang, X., Kuklin, A.V., Baev, A., Ge, Y., Ågren, H., Zhang, H., and Prasad, P.N., “Two-Dimensional MXenes: From Morphological to Optical, Electric, and Magnetic Properties and Applications,” Physics Reports, Vol. 848, 2020, pp. 1-58.
  •  
  • 80. Yan, J., Liu, M., Jeong, Y.G., Kang, W., Li, L., Zhao, Y., Deng, N., Cheng, B., and Yang, G., “Performance Enhancements in Poly(vinylidene fluoride)-Based Piezoelectric Nanogenerators for Efficient Energy Harvesting,” Nano Eneray, Vol. 56, 2019, pp. 662-692.
  •  
  • 81. Bairagi, S., and Ali, S.W., “A Hybrid Piezoelectric Nanogenerator Comprising of KNN/ZnO Nanorods Incorporated PVDF Electrospun Nanocomposite Webs,” Energy Research, Vol. 44, No. 2, 2020, pp. 5545-5563.
  •  
  • 82. Wang, S., Wang, Z.L., and Yang, Y., “A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric–Piezoelectric–Pyroelectric Effects,” Advanced Materials, Vol. 28, No. 15, 2016, pp. 2881-2887.
  •  
  • 83. Sharma, M., Srinivas, V., Madras, G., and Bose, S., “Outstanding Dielectric Constant and Piezoelectric Coefficient in Electrospun Nanofiber Mats of PVDF Containing Silver Decorated Multiwall Carbon Nanotubes: Assessing Through Piezoresponse Force Microscopy,” RCS Advances, Vol. 6, No. 8, 2016, pp. 6251-6258.
  •  
  • 84. Vivekananthan, V., Alluri, N.R., Chandrasekhar, A., Purusothaman, Y., Gupta, A., and Kim, S.J., “Zero-Power Consuming Intruder Identification System by Enhanced Piezoelectricity of K0.5Na0.5NbO3 Using Substitutional Doping of BTO NPs,” Journal of Materials Chemistry C, Vol. 7, No. 25, 2019, pp. 7563-7571.
  •  
  • 85. Izadgoshasb, I., Lim, Y.Y., Lake, N., Tang, L., Padilla, R.V., and Kashiwao, T., “Optimizing Orientation of Piezoelectric Cantilever Beam for Harvesting Energy From Human Walking,” Energy Conversion and Management, Vol. 161, 2018, pp. 66-73.
  •  
  • 86. Xu, Z., Liu, Y., Dong, L., Closson, A.B., Hao, N., Oglesby, M., Escobar, G.P., Fu, S., Han, X., Wen, C., Liu, J., Feldman, M.D., Chen, Z., and Zhang, J.X.J., “Tunable Buckled Beams with Mesoporous PVDF-TrFE/SWCNT Composite Film for Energy Harvesting,” ACS Applied Materials & Interfaces, Vol. 10, No. 39, 2018, pp. 33516-33522.
  •  
  • 87. Jin, C., Hao, N., Xu, Z., Trase, I., Nie, Y., Dong, L., Closson, A., Chen, Z., and Zhang, J.X.J., “Flexible Piezoelectric Nanogenerators Using Metal-Doped ZnO-PVDF Films,” Sensors and Actuators A: Physical, Vol. 305, 2020, 111912.
  •  
  • 88. Mokhtari, F., Spinks, G.M., Fay, C., Cheng, Z., Raad, R., Xi, J., and Foroughi, J., “Wearable Electronic Textiles from Nanostructured Piezoelectric Fibers,” Advanced Materials Technologies, Vol. 5, No. 4, 2020, 1900900.
  •  
  • 89. Pandey, R., Raj, N.P.M.J., Singh, V., Anand, P.L., and Kim, S.J., “Novel Interfacial Bulk Heterojunction Technique for Enhanced Response in ZnO Nanogenerator,” ACS Applied Materials & Interfaces, Vol. 11, No. 6, 2019, pp. 6078-6088.
  •  
  • 90. Chorsi, M.T., Curry, E.J., Chorsi, H.T., Das, R., Baroody, J., Purohit, P.K., Ilies, H., and Nguyen, T.D., “Piezoelectric Biomaterials for Sensors and Actuators,” Advanced Materials, Vol. 31, No. 1, 2019, 1802084.
  •  
  • 91. Mokhtari, F., Spinks, G.M., Sayyar, S., Cheng, Z., Ruhparwar, A., and Foroughi, J., “Highly Stretchable Self-Powered Wearable Electrical Energy Generator and Sensors,” Advanced Materials Technologies, Vol. 6, No. 2, 2021, 2000841.
  •  
  • 92. Yang, T., Pan, H., Tian, G., Zhang, B., Xiong, D., Gao, Y., Yan, C., Chu, X., Chen, N., Zhong, S., Zhang, L., Deng, W., and Yang, W., “Hierarchically Structured PVDF/ZnO Core-Shell Nanofibers for Self-Powered Physiological Monitoring Electronics,” Nano Energy, Vol. 72, 2020, 104706.
  •  
  • 93. Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., Tran, N., Vincent, B., Thomas, S., Menu, P., and Rouxel, D., “Electrospun Poly(vinylidene fluoride-trifluoroethylene)/Zinc Oxide Nanocomposite Tissue Engineering Scaffolds with Enhanced Cell Adhesion and Blood Vessel Formation,” Nano Research, Vol. 10, 2017, pp. 3358-3376.
  •  
  • 94. Lim, S.M., Son, D.H., Kim, J.M., Lee, Y.B., Song, J.K., Choi, S.J., Lee, D.J., Kim, J.H., Lee, M.B., Hyeon, T.H., and Kim, D.H., “Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures,” Advanced Functional Materials, Vol. 25, No. 3, 2015, pp.375-383.
  •  
  • 95. Deng, W., Yang, T., Jin, L., Yan, C., Huang, H., Chu, X., Wang, Z., Xiong, D., Tian, G., Gao, Y., Zhang, H., and Yang, W., “Cowpea-Structured PVDF/ZnO Nanofibers Based Flexible Self-Powered Piezoelectric Bending Motion Sensor Towards Remote Control of Gestures,” Nano Energy, Vol. 55, 2019, pp. 516-525.
  •  

This Article

Correspondence to

  • Seong Yun Kim
  • Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju 54896, Korea

  • E-mail: sykim82@jbnu.ac.kr