Original Article
  • Stretchable Strain Sensors Using 3D Printed Polymer Structures Coated with Graphene/Carbon Nanofiber Hybrids
  • Seung Chan Na*, Hyeon-Jong Lee*, TaeGyeong Lim*, Jeongmin Yun*, Ji Won Suk*†

  • * School of Mechanical Engineering, Sungkyunkwan University, Korea
    ** School of Mechanical Engineering, Department of Smart Fab. Technology, SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Korea

  • 그래핀/탄소나노섬유 코팅된 3D 프린팅 고분자 구조를 이용한 신축성 스트레인 센서
  • 나승찬*· 이현종*· 임태경*· 윤정민*· 석지원*

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Shahrubudin, N., Lee, T.C., and Ramlan, R., “An Overview on 3D Printing Technology: Technological, Materials, and Applications,” Procedia Manufacturing, Vol. 35, 2019, pp. 1286-1296.
  •  
  • 2. Christ, J.F., Aliheidari, N., Ameli, A., and Pötschke, P., “3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites,” Materials & Design, Vol. 131, 2017, pp. 394-401.
  •  
  • 3. Yin, Y.M., Li, H.Y., Xu, J., Zhang, C., Liang, F., Li, X., Jiang, Y., Cao, J.W., Feng, H.F., Mao, J.N., Qin, L., Kang, Y.F., and Zhu, G., “Facile Fabrication of Flexible Pressure Sensor with Programmable Lattice Structure,” ACS Applied Materials & Interfaces, Vol. 13, No. 8, 2021, pp. 10388-10396.
  •  
  • 4. Wang, Z., Guan, X., Huang, H., Wang, H., Lin, W., and Peng, Z., “Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture,” Advanced Functional Materials, Vol. 29, No. 11, 2019, pp. 1807569.
  •  
  • 5. Niknam, H., Sarvestani, H.Y., Jakubinek, M.B., Ashrafi, B., and Akbarzadeh, A.H., “3D Printed Accordion-like Materials: a Design Route to Achieve Ultrastretchability,” Additive Manufacturing, Vol. 34, 2020, pp. 101215.
  •  
  • 6. Jiang, J., Oguzlu, H., and Jiang, F., “3D Printing of Lightweight, Super-strong Yet Flexible All-cellulose Structure,” Chemical Engineering Journal, Vol. 405, 2021, pp. 126668.
  •  
  • 7. Zhou, X., Parida, K., Halevi, O., Liu, Y., Xiong, J., Magdassi, S., and Lee, P.S., “All 3D-printed Stretchable Piezoelectric Nanogenerator with Non-protruding Kirigami Structure,” Nano Energy, Vol. 72, 2020, pp. 104676.
  •  
  • 8. Sun, Y., Ye, W., Chen, Y., Fan, W., Feng, J., and Sareh, P., “Geometric Design Classification of Kirigami-inspired Metastructures and Metamaterials,” Structures, Vol. 33, 2021, pp. 3633-3643.
  •  
  • 9. Nakajima, J., Fayazbakhsh, K., and Teshima, Y., “Experimental Study on Tensile Properties of 3D Printed Flexible Kirigami Specimens,” Additive Manufacturing, Vol. 32, 2020, pp. 101100.
  •  
  • 10. Li, H., Wang, W., Yang, Y., Wang, Y., Li, P., Huang, J., Li, J., Lu, Y., Li, Z., Wang, Z., Fan, B., Fang, J., and Song, W., “Kirigami-based Highly Stretchable Thin Film Solar Cells that are Mechanically Stable for more than 1000 Cycles,” ACS Nano, Vol. 14, No. 2, 2020, pp. 1560-1568.
  •  
  • 11. Chen, W., Liu, L.X., Zhang, H.B., and Yu, Z.Z., “Kirigami-inspired Highly Stretchable, Conductive, and Hierarchical Ti3C2Tx MXene Films for Efficient Electromagnetic Interference Shielding and Pressure Sensing,” ACS Nano, Vol. 15, No. 4, 2021, pp. 7668-7681.
  •  
  • 12. Venkataraman, A., Amadi, E.V., Chen, Y., and Papadopoulos, C., “Carbon Nanotube Assembly and Integration for Applications,” Nanoscale Research Letters, Vol. 14, No. 1, 2019, pp. 220.
  •  
  • 13. Qu, S., Dai, Y., Zhang, D., Li, Q., Chou, T.-W., and Lyu, W., “Carbon Nanotube Film Based Multifunctional Composite Materials: An Overview,” Functional Composites and Structures, Vol. 2, No. 2, 2020, pp. 022002.
  •  
  • 14. Garnett, E., Mai, L., and Yang, P., “Introduction: 1D Nanomaterials/nanowires,” Chemical Reviews, Vol. 119, No. 15, 2019, pp. 8955-8957.
  •  
  • 15. Piao, C., Jang, H., Lim, T., Kim, H., Choi, H.R., Hao, Y., and Suk, J.W., “Enhanced Dynamic Performance of Twisted and Coiled Soft Actuators Using Graphene Coating,” Composites Part B: Engineering, Vol. 178, pp. 107499.
  •  
  • 16. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Advanced Materials, Vol. 22, No. 35, 2010, pp. 3906-3924.
  •  
  • 17. Suk, J.W., Hao, Y., Liechti, K.M., and Ruoff, R.S., “Impact of Grain Boundaries on the Elastic Behavior of Transferred Polycrystalline Graphene,” Chemistry of Materials, Vol. 32, No. 14, 2020, pp. 6078-6084.
  •  
  • 18. Suk, J.W., Mancevski, V., Hao, Y., Liechti, K.M., and Ruoff, R.S., “Fracture of Polycrystalline Graphene Membranes by in situ Nanoindentation in a Scanning Electron Microscope,” Physica Status Solidi-Rapid Research Letters, Vol. 9, 2015, pp. 564-569.
  •  
  • 19. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669.
  •  
  • 20. Hao, Y., Akinwande, D., and Ruoff, R.S., “Enhancement of the Electrical Properties of Graphene Grown by Chemical Vapor Deposition via Controlling the Effects of Polymer Residue,” Nano Letters, Vol. 13, No. 4, 2013, pp. 1462-1467.
  •  
  • 21. Lim, S., Park, H., Yamamoto, G., Lee, C., and Suk, J.W., “Measurements of the Electrical Conductivity of Monolayer Graphene Flakes Using Conductive Atomic Force Microscopy,” Nanomaterials, Vol. 11, 2021, pp. 2575.
  •  
  • 22. Chen, D., Feng, H., and Li, J., “Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications,” Chemical Reviews, Vol. 112, No. 11, 2012, pp. 6027-6053.
  •  
  • 23. Park, H., Lim, S., Nguyen, D.D., and Suk, J.W., “Electrical Measurements of Thermally Reduced Graphene Oxide Powders Under Pressure,” Nanomaterials, Vol. 9, No. 10, 2019, pp. 1387.
  •  
  • 24. Piao, C., and Suk, J.W., “Graphene/silver Nanowire Hybrid Coating for Improved Cycle Performance of Thermally-operated Soft Actuators,” Scientific Reports, Vol. 10, 2020, pp. 17553.
  •  
  • 25. Vo, T.T., Lee, H.-J., Kim, S.-Y., and Suk, J.W., “Synergistic Effect of Graphene/silver Nanowire Hybrid Fillers on Highly Stretchable Strain Sensors Based on Spandex Composites,” Nanomaterials, Vol. 10, 2020, pp. 2063.
  •  
  • 26. Al-Saleh, M.H. and Sundararaj, U., “A Review of Vapor Grown Carbon Nanofiber/polymer Conductive Composites,” Carbon, Vol. 47, No. 1, 2009, pp. 2-22.
  •  
  • 27. Jang, H., Lee, H.-J., and Suk, J.W., “Mechanical and Electrical Characteristics of Polyurethane-based Composite Fibers,” Composites Research, Vol. 33, No. 2, 2020, pp. 50-54.
  •  

This Article

Correspondence to

  • Ji Won Suk
  • * School of Mechanical Engineering, Sungkyunkwan University, Korea

  • E-mail: jwsuk@skku.edu