Original Article
  • Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites
  • Mi Na Kim*, Ji-un Jang**, Hyeseong Lee***, Myung Jun Oh*†, Seong Yun Kim***†

  • * Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Korea
    ** Research Institute of Industrial Science, Hanyang University, Seoul 04763, Korea
    *** Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju 54896, Korea

  • 미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성
  • 김미나* · 장지운** · 이혜성*** · 오명준*† · 김성륜***†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Kim, K.S., and Park, S.J., “Technique Status of Carbon Fibers-Reinforced Composites for Aircrafts,” Elastomers and Composites, Vol. 46, No. 2, 2011, pp. 118-124.
  •  
  • 2. Timmis, A.J., Hodzic, A., Koh, L., Bonner, M., Soutis, S., Schäfer, A.W., and Dray, L., “Environmental Impact Assessment of Aviation Emission Reduction Through the Implementation of Composite Materials,” The International Journal of Life Cycle Assessment, Vol. 20, No. 2, 2015, pp. 233-243.
  •  
  • 3. Irving, P.E., and Soutis, C., Polymer Composites in Aerospace Industry, Woodhead Pub. Co., Sawston, UK, 2019.
  •  
  • 4. Soutis, C., “Fibre Reinforced Composites in Aircraft Construction,” Progress in Aerospace Sciences, Vol. 41, No. 2, 2005, pp. 143-151.
  •  
  • 5. Lee T.-H., “Applications of Carbon Fiber to the Aerospace,” Proceeding of the 37th 2011 KSPE Fall Conference, Busan, Korea, Nov. 2011, pp. 511-514.
  •  
  • 6. Kim, D.J., Oh, D.Y., Jeong, M.K., and Nam, S.Y., “Recent Trends in Composite Materials for Aircrafts,” Applied Chemistry for Engineering, Vol. 27, No. 3, 2016, pp. 252-258.
  •  
  • 7. Parveez, B., Kittur, M.I., Badruddin, I.A., Kamangar, S., Hussien, M., and Umarfarooq, M.A., “Scientific Advancements in Composite Materials for Aircraft Applications: A Review,” Polymers, Vol. 14, No. 22, 2022, 5007.
  •  
  • 8. Giurgiutiu, V., Structural Health Monitoring of Aerospace Composites, Academic Press, New York, USA, 2015.
  •  
  • 9. Campbell Jr, F.C., “Manufacturing Technology for Aerospace Structural Materials,” Elsevier, Amsterdam, The Netherlands, 2011.
  •  
  • 10. Lee, J.Y., Ni, X., Daso, F., Xiao, X., Gómez, J.S., Varela, T.B., Kessler, S.S., and Wardle, B.L., “Advanced Carbon Fiber Composite Out-of-Autoclave Laminate Manufacture via Nanostructured out-of-Oven Conductive Curing,” Composites Science and Technology, Vol. 166, 2018, pp. 150-159.
  •  
  • 11. Centea, T., Grunenfelder, L.K., and Nutt, S.R., “A Review of Out-of-Autoclave Prepregs – Material Properties, Process Phenomena, and Manufacturing Considerations,” Composites Part A: Applied Science and Manufacturing, Vol. 70, 2015, pp. 132-154.
  •  
  • 12. Trzepieciński, T., Najm, S.M., Sbayti, M., Belhadjsalah, H., Szpunar, M., and Lemu, H.G., “New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications,” Journal of Composites Science, Vol. 5, No. 8, 2021, pp. 217.
  •  
  • 13. Gruenfelder, L.K., and Nutt, S.R., “Void Formation in Composite Prepregs – Effect of Dissolved Moisture,” Composites Science and Technology, Vol. 70, No. 16, 2010, pp. 2304-2309.
  •  
  • 14. Witik, R.A., Gaille, F., Teuscher, R., Ringwald, H., Michaud, V., and Månson, J.-A.E., “Economic and Environmental Assessment of Alternative Production Methods for Composite Aircraft Components,” Journal of Cleaner Production, Vol. 29-30, 2012, pp. 91-102.
  •  
  • 15. Sun, X., Li, Z., Wang, X., and Li, C., “Technology Development of Electric Vehicles: A Review,” Energies, Vol. 13, No. 1, 2020, pp. 90.
  •  
  • 16. Jacob, A., “BMW Counts on Carbon Fibre for Its Megacity Vehicle,” Reinforced Plastics, Vol. 54, No. 5, 2010, pp. 38-41.
  •  
  • 17. Sarfraz, M.S., Hong, H., and Kim, S.S., “Recent Developments in the Manufacturing Technologies of Composite Components and Their Cost-Effectiveness in the Automotive Industry: A Review Study,” Composite Structures, Vol. 266, 2021, pp. 113864.
  •  
  • 18. Kama Web Journal, 2016. Available at: https://www.kama.or.kr/jsp/webzine/201604/pages/report_01.jsp
  •  
  • 19. Feraboli, P., and Masini, A., “Development of Carbon/Epoxy Structural Components for a High Performance Vehicle,” Composites Part B: Engineering, Vol. 35, No 4, 2004, pp. 323-330.
  •  
  • 20. Stewrt, R., “Rebounding Automotive Industry Welcome News for FRP,” Reinforced Plastics, Vol. 55, No. 1, 2011, pp. 38-44.
  •  
  • 21. Fuchs, A.N., Schoeberl, M., Tremmer, J., and Zaeh, M.F., “Laser Cutting of Carbon Fiber Fabrics,” Physics Procedia, Vol. 41, 2013, pp. 372-380.
  •  
  • 22. Kim, M., “Industry Development Direction and Research Trend of the Carbon Fiber Reinforced Polymer (CFRP) Composite,” Polymer Science and Technology, Vol. 31, No. 6, 2020.
  •  
  • 23. Cicala, G., Rosa, D.R., Musarra, M., Saccullo, G., Banatao, R., and Pastine, S., “Recyclable Epoxy Resins: an Example of Green Approach for Advanced Composite Applications,” AIP Conference Proceedings, Vol. 1736, No. 1, 2016, pp. 020027.
  •  
  • 24. Kim, R.-W., Kim, C.-H., Hwang, K.-H., and Kim, S.-R., “Embedded Based Real-Time Monitoring in the High-Pressure Resin Transfer Molding Process for CFRP,” Applied Sciences, Vol. 9, No. 9, 2019, pp. 1795.
  •  
  • 25. “HP-RTM System,” Dieffenbacher.
  •  
  • 26. Fais, C., “Lightweight Automotive Design with HP-RTM,” Reinforced Plastics, Vol. 55, No. 5, 2011, pp. 29-31.
  •  
  • 27. Cheon, J., and Kim, M., “Impact Resistance and Interlaminar Shear Strength Enhancement of Carbon Fiber Reinforced Thermoplastic Composites by Introducing MWCNT-Anchored Carbon Fiber,” Composites Part B: Engineering, Vol. 217, 2021, pp. 108872.
  •  
  • 28. Zhang, J., Chevali, V.S., Wang, H., and Wang, C.-H., “Current Status of Carbon Fibre and Carbon Fibre Composites Recycling,” Composites Part B: Engineering, Vol. 193, 2020, pp. 108053.
  •  
  • 29. Zhang, J., Souza, M. de., Creighton, C., and Varley, R.J., “New Approaches to Bonding Thermoplastic and Thermoset Polymer Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 133, 2020, pp. 105870.
  •  
  • 30. Mcnally, T., Boyd, P., McClory, C., Bien, D., Moore, I., Millar, B., Davidson, J., and Carroll, T., “Recycled Carbon Fiber Filled Polyethylene Composites,” Journal of Applied Polymer Science, Vol. 107, No. 3, 2008, pp. 2015-2021.
  •  
  • 31. Genna, S., Leone, C., Ucciardello, M., and Giuliani, M., “Increasing Adhesive Bonding of Carbon Fiber Reinforced Thermoplastic Matrix by Laser Surface Treatment,” Polymer Engineering Science, Vol. 57, No. 7, 2017, pp. 685-692.
  •  
  • 32. Luo, H., Xiong, G., Ma, G., Li, D., and Wan, Y., “Preparation and Performance of Long Carbon Fiber Reinforced Polyamide 6 Composites Injection-Molded from Core/Shell Structured Pellets,” Materials & Design, Vol. 64, 2014, pp. 294-300.
  •  
  • 33. Montes-Morán, M.A., Martínez-Alonso, A., Tascón, J.M.D., and Young, R.J., “Effects of Plasma Oxidation on the Surface and Interfacial Properties of Ultra-High Modulus Carbon Fibres.” Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 3-4, 2001, pp. 361-371.
  •  
  • 34. Liu, J., Tian, Y., Chen, Y., Liang, J., Zhang, L., and Fong, H., “A Surface Treatment Technique of Electrochemical Oxidation to Simultaneously Improve the Interfacial Bonding Strength and the Tensile Strength of PAN-Based Carbon Fibers,” Materials Chemistry and Physics, Vol. 122, No. 2-3, 2010, pp. 548-555.
  •  
  • 35. Liu, H., Zhao, Y., Chen, F., Li, N., Sun, M., Zang, T., Sun, T., Wang, K., and Du, S., “Effect of Polyetherimide Sizing Involving Carbon Nanotubes on Interfacial Performance of Carbon Fiber/Polyetheretherketone Composites,” Polymers for Advanced Technologies, Vol. 32, No. 9, 2021, pp. 3689-3700.
  •  
  • 36. Jang, J.-U., Park, H.C., Lee, H.S., Khil, M.-S., and Kim, S.Y., “Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester,” Scientific Reports, Vol. 8, No. 2, 2018, pp. 7659.
  •  
  • 37. Lee, H.S., Kim, S.-Y., Noh, Y.J., and Kim, S.Y., “Design of Microwave Plasma and Enhanced Mechanical Properties of Thermoplastic Composites Reinforced with Microwave Plasma-Treated Carbon Fiber Fabric,” Composites Part B: Engineering, Vol. 60, 2014, pp. 621-626.
  •  
  • 38. Ono, M., Yamane, M., Tanoue, S., Uematsu, H., and Yamashita, Y., “Mechanical Properties of Thermoplastic Composites Made of Commingled Carbon Fiber/Nylon Fiber,” Polymers, Vol. 13, No. 19, 2021, pp. 3206.
  •  
  • 39. Kim, S.W., Park, T., Um, M.K., Lee, J., Seong, D.G., and Yi, J.W., “Effect of Caprolactam Modified Phenoxy-Based Sizing Material on Reactive Process of Carbon Fiber-Reinforced Thermoplastic Polyamide-6,” Composites Part A: Applied Science and Manufacturing, Vol. 139, 2020, pp. 106104.
  •  
  • 40. Irisawa, T., Inagaki, R., Iida, J., Iwamura, R., Ujihara, K., Kobayashi, S., and Tanabe, Y., “The Influence of Oxygen Containing Functional Groups on Carbon Fibers for Mechanical Properties and Recyclability of CFRTPs Made with In-Situ Polymerizable Polyamide 6,” Composites Part A: Applied Science and Manufacturing, Vol. 112, 2018, pp. 91-99.
  •  
  • 41. Li, Y., Huang, X., Zeng, L., Li, R., Tian, H., Fu, X., Wang, Y., and Zhong, W.-H., “A Review of the Electrical and Mechanical Properties of Carbon Nanofiller-Reinforced Polymer Composites,” Journal of Materials Science, Vol. 54, 2019, pp. 1036-1076.
  •  
  • 42. Kumar, A., Sharma, K., and Dixit, A.R., “A Review on the Mechanical Properties of Polymer Composites Reinforced by Carbon Nanotubes and Graphene,” Carbon Letters, Vol. 31, 2021, pp. 149-165.
  •  
  • 43. Trivedi, D.N., and Rachchh, N.V., “Graphene and Its Application in Thermoplastic Polymers as Nano-Filler- A Review,” Polymer, Vol. 240, 2022, pp. 124486.
  •  
  • 44. Ning, N., Fu, S., Zhang, W., Chen, F., Wang, K, Deng, H., Zhang, Q., and Fu, Q., “Realizing the Enhancement of Interfacial Interaction in Semicrystalline Polymer/Filler Composites via Interfacial Crystallization,” Progress in Polymer Science, Vol. 37, No. 10, 2012, pp. 1425-1455.
  •  
  • 45. Capiati, N.J., and Porter, R.S., “The Concept of One Polymer Composites Modelled with High Density Polyethylene,” Journal of Materials Science, Vol. 10, 1975, pp. 1671-1677.
  •  
  • 46. Majola, A., Vainionpää, S., Rokkanen, P., Mikkola, H.-M., and Törmälä, P., “Absorbable Self-Reinforced Polylactide (SR-PLA) Composite Rods for Fracture Fixation: Strength and Strength Retention in the Bone and Subcutaneous Tissue of Aabbits,” Journal of Materials Science: Materials in Medicine, Vol. 3, 1992, pp. 43-47.
  •  
  • 47. Wright-Charlesworth, D.D., Miller, D.M., Miskioglu, I., and King, J.A., “Nanoindentation of Injection Molded PLA and Self-Reinforced Composite PLA after In Vitro Conditioning for Three Months,” Journal of Biomedical Materials Research Part A, Vol. 74A, No. 3, 2005, pp. 388-396.
  •  
  • 48. Zakir Hossain, K.M., Felfel, R.M., Rudd, C.D., Thielemans, W., and Ahmed I., “The Effect of Cellulose Nanowhiskers on the Flexural Properties of Self-Reinforced Polylactic Acid Composites,” Reactive and Functional Polymers, Vol. 85, 2014, pp. 193-200.
  •  
  • 49. Gao, C., Meng, L., Yu, L., Simon, G.P., Liu, H., Chen, L., and Petinakis, S., “Preparation and Characterization of Uniaxial Ppoly(lactic acid)-Based Self-Reinforced Composites,” Composites Science and Technology, Vol. 117, 2015, pp. 392-397.
  •  
  • 50. Kurokawa, N., and Hotta, A., “Thermomechanical Properties of Highly Transparent Self-Reinforced Polylactide Composites with Electrospun Stereocomplex Polylactide Nanofibers,” Polymer, Vol. 153, 2018, pp. 214-222.
  •  
  • 51. Hine, P.J., and Ward, I.M., “Hot Compaction of Woven Poly(ethylene terephthalate) Multifilaments,” Journal of Applied Polymer Science, Vol.91, No. 4, 2003, pp. 2223-2233.
  •  
  • 52. Zhang, J.M., Reynolds, C.T., and Peijs, T., “All-Poly(ethylene terephthalate) Composites by Film Stacking of Oriented Tapes,” Composites Part A: Applied Science and Manufacturing, Vol. 40, No. 11, 2009, pp. 1747-1755.
  •  
  • 53. Duhovic, M., Bhattacharyya, D., and Fakirov, S., “Nanofibrillar Single Polymer Composites of Poly(ethylene terephthalate),” Macromolecular Materials and Engineering, Vol. 295, No. 2, 2010, pp. 95-99.
  •  
  • 54. Jerpdal, L., Schuette, P., Ståhlberg, D., and åkermo, M., “Influence of Temperature during Overmolding on the Tensile Modulus of Self-Reinforced Poly(ethylene terephthalate) Insert,” Journal of Applied Polymer Science, Vol. 137, No. 5, 2019, pp. 48334.
  •  
  • 55. Hine, P.J., and Ward, M.I., “Hot Compaction of Woven Nylon 6,6 Multifilaments,” Journal of Applied Polymer Science, Vol. 101, No. 2, 2006, pp. 991-997.
  •  
  • 56. Bhattacharyya, D., Maitrot, P., and Fakirov, S., “Polyamide 6 Single Polymer Composites,” eXPRESS Polymer Letters, Vol. 3, No. 8, 2009, pp. 525-532.
  •  
  • 57. Gong, Y., and Yang, G., “Single Polymer Composites by Partially Melting Recycled Polyamide 6 Fibers: Preparation and Characterization,” Journal of Applied Polymer Science, Vol. 118, No. 6, 2010, pp. 3357-3363.
  •  
  • 58. Gong, Y., Liu, A., and Yang, G., “Polyamide Single Polymer Composites Prepared via In Situ Anionic Polymerization of ε-Caprolactam,” Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 8, 2010, pp. 1006-1011.
  •  
  • 59. Vecchione, P., Acierno, D., Abbate, M., and Russo, P., “Hot-Compacted Self Reinforced Polyamide 6 Composite Laminates,” Composites Part B: Engineering, Vol. 110, 2017, pp. 39-45.
  •  
  • 60. Gilbert, J.L., Ney, D.S., and Lautenschlager, E.P., “Self-Reinforced Composite Poly(methyl methacrylate): Static and Fatigue Properties,” Biomaterials, Vol. 16, No. 14, 1995, pp. 1043-1055.
  •  
  • 61. Wright, D.D., Lautenschlager, E.P., and Gilbert, J.L., “Bending and Fracture Toughness of Woven Self-Reinforced Composite Poly(methyl methacrylate),” Journal of Biomedical Materials Research, Vol. 36, No. 4, 1998, pp. 441-453.
  •  
  • 62. Wright, D.D., Lautenschlager, E.P., and Gilbert, J.L., “Interfacial Properties of Self-Reinforced Composite Poly(methyl methacrylate),” Journal of Biomedical Materials Research, Vol. 43, No. 2, 2002, pp. 153-161.
  •  
  • 63. Kim, D.W., Kim, Y.S., Jung, Y.C., Kim, S.Y., Song, J.M., Kim, M., and Kim, J., “Development of a Continuous Manufacturing Process for Self-Reinforced Composites Using Multi-Step Highly Drawn Polypropylene Tapes,” Polymer, Vol. 191, 2020, pp. 122267.
  •  
  • 64. Lee, H., Kim, Y.S., Choi, W.H., Yun, D.W., Lee, J., Song, J.M., Kim, S., Kim, J., and Kim, S.Y., “Processing Temperature Window Design via Controlling Matrix Composition for Polypropylene-Based Self-Reinforced Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 143, 2021, pp. 106301.
  •  
  • 65. Shubhra, Q.T., Alam, A., and Quaiyyum, M., “Mechanical Properties of Polypropylene Composites: A Review,” Journal of Thermoplastic Composite Materials, Vol. 26, No. 3, 2011, pp. 362-391.
  •  
  • 66. Maddah, H.A., “Polypropylene as a Promising Plastic : A Review, American Journal of Polymer Science, Vol. 6, No. 1, 2016, pp. 1-11.
  •  
  • 67. Deng, M., and Shalaby, S.W., “Properties of Self-Reinforced Ultra-High-Molecular-Weight Polyethylene Composites,” Biomaterials, Vol. 18, No. 9, 1997, pp. 645-655.
  •  
  • 68. Guan, S., Lai, F.S., McCarthy, S.P., Chiu, D., Zhu, X., and Shen, K., “Morphology and Properties of Self-Reinforced High Density Polyethylene in Oscillating Stress Field,” Polymer, Vol. 38, No. 20, 1997, pp. 5251-5253.
  •  
  • 69. Zhang, G., Jiang, L., Shen, K., and Guan, Q., “Self-Reinforcement of High-Density Polyethylene/Low-Density Polyethylene Prepared by Oscillating Packing Injection Molding Under Low Pressure,” Journal of Applied Polymer Science, Vol. 71, No. 5, 1999, pp. 799-804.
  •  
  • 70. Huang, H.-X., “Continuous Extrusion of Self-Reinforced High Density Polyethylene,” Polymer Engineering & Science, Vol. 38, No. 11, 2004, pp. 1805-1811.
  •  
  • 71. Lei, J., Jiang, G., and Shen, K., “Biaxially Self-Reinforced High-Density Polyethylene Prepared by Dynamic Packing Injection Molding. I. Processing parameters and mechanical properties,” Journal of Applied Polymer Science, Vol. 93, No. 4, 2004, pp. 1584-1590.
  •  
  • 72. Huang, Y,-F., Xu, J.-Z., Li, J.-S., He, B.-X., Xu, L., and Li, Z.-M., “Mechanical Properties and Biocompatibility of Melt Processed, Self-Reinforced Ultrahigh Molecular Weight Polyethylene,” Biomaterials, Vol. 35, No. 25, 2014, pp. 6687-6697.
  •  
  • 73. Gil-Castell, O., Badia, J.D., Ingles-Mascaros, S., Teruel-Juanes, R., Serra, A., and Ribes-Greus, A., “Polylactide-Based Self-Reinforced Composites Biodegradation: Individual and Combined Influence of Temperature, Water and Compost,” Polymer Degradation and Stability, Vol. 158, 2018, pp. 40-51.
  •  
  • 74. Saeidlou, S., Huneault, M.A., Li, H., and Park, C.B., “Poly(lactic acid) Crystallization,” Progress in Polymer Science, Vol. 37, No. 12, 2012, pp. 1657-1677.
  •  
  • 75. Kaban, A.P.S., Rahmat, N.G., and Fatriansyah, J.F., “Kinetics of Catalytic Pyrolysis of Polyethylene Terephthalate (PET) Plastic Polymer with Zeolite,” AIP Conference Proceedings, Vol. 2262, 2020, pp. 050007.
  •  
  • 76. Mouritz, A.P., Leong, K.H., and Herszberg, I., “A Review of the Effect of Stitching on the In-Plane Mechanical Properties of Fibre-Reinforced Polymer Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 28, No. 12, 1997, pp. 979-991.
  •  
  • 77. Smith, P., and Lemstra, P.J., “Ultra-High-Strength Polyethylene Filaments by Solution Spinning/Drawing,” Journal of Materials Science, Vol. 15, 1980, pp. 505-514.
  •  
  • 78. Zafar, M.S., “Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update,” Polymers, Vol. 12, No. 10, 2020, pp. 2299.
  •  
  • 79. Maddah, H.A., “Polypropylene as a Promising Plastic: A Review,” American Journal of Polymer Science, Vol. 6, 2016, pp. 1-11.
  •  

This Article

Correspondence to

  • Myung Jun Oh*, Seong Yun Kim***
  • * Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Korea
    *** Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju 54896, Korea

  • E-mail: mjoh@jbnu.ac.kr, sykim82@jbnu.ac.kr