Original Article
  • Study of Non Pressure and Pressure Foam of Bio-based Polymer Containing Blend
  • Dong-Hun Han*,**, Young-Min Kim*, Danbi Lee*, Seongho Son*, Geon-hee Seo*, Hanseong Kim**†

  • * Innovation Material Research Group, Korea Institute of Footwear & Leather Technology, Busan 47154, Korea
    ** Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea

  • 바이오 기반 폴리머가 포함된 블렌드의 상압 및 가압 발포 연구
  • 한동훈*,** · 김영민*· 이단비*· 손성호*· 서건희*· 김한성**†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Narayan, R., “Drivers & Rationale for Use of Biobased Materials Based on Life Cycle Assessment (LCA),” Global Plastics Environmental Conference, Detroit, Feb. 2004, Paper Abstract #18.
  •  
  • 2. Garlotta, D., “A Literature Review of Poly(Lactic Acid),” Journal of Polymers and the Environment, Vol. 9, No. 2, 2001, pp. 63-84.
  •  
  • 3. Bitinis, N., Verdejo, R., Cassagnau, P., and Lopez-Manchado, M.A., “Structure and Properties of Polylactide/natural Rubber Blends,” Materials Chemistry and Physics, Vol. 129, No. 3, 2011, pp. 823-831.
  •  
  • 4. Xu, C., Yuan, D., Fu, L., and Chen, Y., “Physical Blend of PLA/NR with Co-continuous Phase Structure: Preparation, Rheology Property, Mechanical Properties and Morphology,” Polymer Testing, Vol. 37, 2014, pp. 94-101.
  •  
  • 5. Pongtanayut, K., Thongpin, C., and Santawitee, O., “The Effect of Rubber on Morphology, Thermal Properties and Mechanical Properties of PLA/NR and PLA/ENR Blends,” Energy Procedia, Vol. 34, 2013, pp. 888-897.
  •  
  • 6. Grijpma, D.W., Van Hofslot, R.D.A., Super, H., Nijenhuis, A.J., and Pennings,, A.J., “Rubber Toughening of Poly(lactide) by Blending and Block Copolymerization,” Polymer Engineering and Science, Vol. 34, No. 22, 1994, pp. 1674-1684.
  •  
  • 7. Hiljanen‐Vainio, M., Karjalainen, T., and Seppälä, J., “Biodegradable Lactone Copolymers. I. Characterization and Mechanical Behavior of Ε‐caprolactone and Lactide Copolymers,” Journal of Applied Polymer Science, Vol. 59, No. 8, 1996, pp. 1281-1288.
  •  
  • 8. Gramlich, W.M., Robertson, M.L., and Hillmyer, M.A., “Reactive Compatibilization of Poly(L-lactide) and Conjugated Soybean Oil,” Macromolecules, Vol. 43, No. 5, 2010, pp. 2313-2321.
  •  
  • 9. Ljungberg, N., and Bengt, W., “Preparation and Properties of Plasticized Poly(Lactic Acid) Films,” Biomacromolecules, Vol. 6, No. 3, 2005, pp. 1789-1796.
  •  
  • 10. Noda, I., Satkowski, M., Dowrey, A.E., and Marcott, C., “Polymer Alloys of Nodax Copolymers and Poly(Lactic Acid),” Macromolecular Bioscience, Vol. 4, No. 3, 2004, pp. 269-75.
  •  
  • 11. Byrne, N., Hameed, N., Werzer, O., and Guo, Q., “The Preparation of Novel Nanofilled Polymer Composites Using Poly(L-lactic Acid) and Protein Fibers,” European Polymer Journal, Vol. 47, No. 6, 2011, pp. 1279-1283.
  •  
  • 12. Broz, M.E., VanderHart, D.L., and Washburn, N.R., “Structure and Mechanical Properties of Poly(D,L-lactic Acid)/Poly(e-caprolactone) Blends,” Biomaterials, Vol. 24, No. 23, 2003, pp. 4181-4190.
  •  
  • 13. Anderson, K.S., and Marc, A.H., “The Influence of Block Copolymer Microstructure on the Toughness of Compatibilized Polylactide/Polyethylene Blends,” Polymer, Vol. 45, No. 26, 2004, pp. 8809-8823.
  •  
  • 14. Li, Y.J., and Hiroshi, S., “Toughening of Polylactide by Melt Blending With a Biodegradable Poly(Ether) Urethane Elastomer,” Macromolecular Bioscience, Vol. 7, No. 7, 2007, pp. 921-928.
  •  
  • 15. Bioki, H.A., Mirbagheri, Z., Tabbakh, F., and Mirjalili, G., “Effect of Crystallinity and Irradiation on Thermal Properties and Specific Heat Capacity of LDPE & LDPE/EVA,” Applied Radiation and Isotopes, Vol. 70, No. 1, 2012, pp. 1-5.
  •  
  • 16. Lippa, N., Hall, E., Piland, S., Gould, T., and Rawlins, J., “Mechanical Ageing Protocol Selection Affects Macroscopic Performance and Molecular Level Properties of Ethylene Vinyl Acetate (EVA) Running Shoe Midsole Foam,” Procedia Engineering, Vol. 72, 2014, pp. 285-291.
  •  
  • 17. Kim, M.S., Park, C.C., Chowdhury, S.R., and Kim, G.H., “Physical Properties of Ethylene Vinyl Acetate Copolymer (EVA)/Natural Rubber (NR) Blend Based Foam,” Journal of Applied Polymer Science, Vol. 94, No. 5, 2004, pp. 2212-2216.
  •  
  • 18. Rezaeian, I., Jafari, S.H., Zahedi, P., Ghaffari, M., and Afradian, S., “Improvements of Physical and Mechanical Properties of Electron Beam Irradiation-crosslinked EVA Foams,” Polymers for Advanced Technologies, Vol. 20, No. 5, 2008, pp. 487-492.
  •  
  • 19. Gajria, A.M., Davé, V., Gross, R.A., and McCarthy, S.P., “Miscibility and Biodegradability of Blends of Poly(Lactic Acid) and Poly(Vinyl Acetate),” Polymer, Vol. 37, No. 3, 1996, pp. 437-344.
  •  
  • 20. Yoon, J.S., Oh, S.H., Kim, M.N., Chin, I.J., and Kim, Y.H., “Thermal and Mechanical Properties of Poly(L-lactic Acid)-poly(Ethylene-co-vinyl Acetate) Blends,” Polymer, Vol. 40, No. 9, 1999, pp. 2303-2312.
  •  
  • 21. Ma, P., Hristova-Bogaerds, D.G., Goossens, J.G.P., Spoelstra, A.B., Zhang, Y., and Lemstra, P.J., “Toughening of Poly(Lactic Acid) by Ethylene-co-vinyl Acetate Copolymer with Different Vinyl Acetate Contents,” European Polymer Journal, Vol. 48, No. 1, 2012, pp. 146-154.
  •  
  • 22. Han, D.H., Choi, M.C., Nagappan, S., Kim, Y.M., and Kim, H.S., “Ethylene Vinyl Acetate (EVA)/Poly(Lactic Acid) (PLA) Blends and Their Foams,” Molecular Crystals and Liquid Crystals, Vol. 707, No. 1, 2020, pp. 38-45.
  •  

This Article

Correspondence to

  • Hanseong Kim
  • Innovation Material Research Group, Korea Institute of Footwear & Leather Technology, Busan 47154, Korea

  • E-mail: hanseongkim@pusan.ac.kr