Original Article
  • An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries
  • Mohamad A. Raja*, Su Hyun Lim*, Doyun Jeon**, Hyunsoo Hong*, Inyeong Yang*, Sanha Kim*, Seong Su Kim*†

  • * Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)
    ** Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST)

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Kim, D.G., Koo, K.R., Kim, H.G., Song, S.C., Kwon, S.C., Lim, J.H., and Kim, Y.B., “Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite”, Composites Research, Vol. 36, No. 3, 2023, pp 230-240.
  •  
  • 2. Asp, L.E., Johansson, M., Lindbergh, G., Xu, J., and Zenkert, D., “Structural Battery Composites: A Review,” Functional Composites and Structures, Vol. 1, No. 4, 2019.
  •  
  • 3. Fu, Y., Zhou, H., and Zhou, L., “Phase-microstructure-mechanical Properties Relationship of Carbon Fiber Reinforced Ionic Liquid Epoxy Composites,” Composites Science and Technology, Vol. 207, 2021.
  •  
  • 4. Kwon, S.J., Choi, U.H., Jung, B.M., Kim, Y.D., and Lee, S.B., “Effect of the Curing Behavior on Electrical and Mechanical Properties of Multifunctional Structural Electrolyte”, Composites Research, Vol. 29, 2016, pp 395-400.
  •  
  • 5. Snyder, J.F., Wong, E.L., and Hubbard, C.W., “Evaluation of Commercially Available Carbon Fibers, Fabrics, and Papers for Potential Use in Multifunctional Energy Storage Applications,” Journal of The Electrochemical Society, Vol. 156, 2009.
  •  
  • 6. Islam, M.S., Deng, Y., Tong, L., Faisal, S.N., Roy, A.K., Minett, A.I., and Gomes, V.G., “Grafting Carbon Nanotubes Directly onto Carbon Fibers for Superior Mechanical Stability: Towards Next Generation Aerospace Composites and Energy Storage Applications,” Carbon, Vol. 96, 2016, pp. 701-710.
  •  
  • 7. Moyer, K., Meng, C., Marshall, B., Assal, O., Eaves, J., Perez, D., Karkkainen, R., Roberson, L., and Pint, C.L., “Carbon Fiber Reinforced Structural Lithium-ion Battery Composite: Multifunctional Power Integration for CubeSats,” Energy Storage Materials, Vol. 24, 2020, pp. 676-681.
  •  
  • 8. Cheng, C., Zhou, G., Du, J., Zhang, H., Guo, D., Li, Q., Wei, W., and Chen, L., “Hierarchical Porous Co3O4 Nanosheet Arrays Directly Grown on Carbon Cloth by an Electrochemical Route for High Performance Li-ion Batteries,” New Journal of Chemistry, Vol. 38, No. 6, 2014, pp. 2250-2253.
  •  
  • 9. Huang, W., Wang, P., Liao, X, Chen, Y., Borovilas, J., Jin, T., Li, A., Cheng, Q., Zhang, Y., Zhai, H., Chitu, A., Shan, Z., and Yang, Y., “Mechanically-robust Structural Lithium-sulfur Battery with High Energy Density,” Energy Storage Materials, Vol. 33, 2020, pp. 416-422.
  •  
  • 10. Zheng, Y., Yao, Y., Ou, J., Li, M., Luo, D., Dou, H., Li, Z., Amine, K., Yu, A., and Chen, Z., “A Review of Composite Solid-state Electrolytes For Lithium Batteries: Fundamentals, Key Materials and Advanced Structures,” Chemical Society Reviews, Vol. 49, No. 23, 2020, pp. 8790-8839.
  •  
  • 11. Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., and Wang, G., “Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects,” Chem, Vol. 5, No. 9, 2019, pp. 2326-2352.
  •  
  • 12. Xue, Z., He, D., and Xie, X., “Poly (ethylene oxide)-based Electrolytes for Lithium-ion Batteries,” Journal of Materials Chemistry A, Vol. 3, No. 38, 2015, pp. 19218-19253.
  •  
  • 13. Zhang, Y., Zheng, Z., Liu, X., Chi, M., and Wang, Y., “Fundamental Relationship of Microstructure and Ionic Conductivity of Amorphous LLTO as Solid Electrolyte Material,” Journal of The Electrochemical Society, Vol. 166, No. 4, pp. A515-A520, 2019.
  •  
  • 14. Polu, A.R., and Rhee, H.W., “Ionic Liquid Doped PEO-based Solid Polymer Electrolytes for Lithium-ion Polymer Batteries,” International Journal of Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 7212-7219.
  •  
  • 15. Huang, F., Zhou, Y., Sha, Z., Peng, S., Chang, W., Cheng, X., Zhang, J., Brown, S.A., Han, Z., and Wang, C.H., “Surface Functionalization of Electrodes and Synthesis of Dual-Phase Solid Electrolytes for Structural Supercapacitors,” ACS Applied Materials & Interfaces, Vol. 14, No. 27, 2022, pp. 30857-30871.
  •  
  • 16. Kwon, S.J., Kim, T., Jung, B.M., Lee, S.B., and Choi, U.H., “Multifunctional Epoxy-Based Solid Polymer Electrolytes for Solid-State Supercapacitors,” ACS Applied Materials & Interfaces, Vol. 10, No. 41, 2018, pp. 35108-35117.
  •  
  • 17. Sowmiah, S., Srinivasadesikan, V., Tseng, M.C., and Chu, Y.H., “On the Chemical Stabilities of Ionic Liquids,” Molecules, Vol. 14, No. 9, 2009, pp. 3780-3813.
  •  

This Article

Correspondence to

  • Seong Su Kim
  • Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)

  • E-mail: seongsukim@kaist.ac.kr