Review Article
  • Recent Progress of ZnSe(Te) Quantum Dot and Their Application in Blue Light Emitting Diodes
  • Wooseok Jin*, Jaehan Jung*†

  • *Department of Materials Science and Engineering, Seoul National University of Science and Technology

  • ZnSe(Te) 양자점 기반 청색 발광 다이오드의 최근 연구 동향
  • 진우석* · 정재한*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Anikeeva, P.O., et al., “Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum,” Nano Letters, 2009, 9(7), pp. 2532-2536.
  •  
  • 2. Tian, D., et al., “A Review on Quantum Dot Light‐Emitting Diodes: From Materials to Applications,” Advanced Optical Materials, 2022, 11(2).
  •  
  • 3. Rogach, A.L., et al., “Organization of Matter on Different Size Scales: Monodisperse Nanocrystals and Their Superstructures,” Ad-vanced Functional Materials, 2002, 12(10), pp. 653-664.
  •  
  • 4. Deng, X., et al., “Heavy-metal-free Blue-emitting ZnSe(Te) Quantum Dots: Synthesis and Light-emitting Applications,” Journal of Ma-terials Chemistry C, 2023, 11(42), pp. 14495-14514.
  •  
  • 5. Bae, W.K., et al., “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Advanced Materials, 2009, 21(17), pp. 1690-1694.
  •  
  • 6. Moon, H., et al., “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Advanced Materials, 2019, 31(34).
  •  
  • 7. Song, J., et al., “Over 30% External Quantum Efficiency Light‐Emitting Diodes by Engineering Quantum Dot‐Assisted Energy Level Match for Hole Transport Layer,” Advanced Functional Materials, 2019, 29(33).
  •  
  • 8. Mallem, K., et al., “Solution-Processed Red, Green, and Blue Quantum Rod Light-Emitting Diodes,” ACS Appl Mater Interfaces, 2022, 14(16), pp. 18723-18735.
  •  
  • 9. Kim, T., et al., “Efficient and Stable Blue Quantum Dot Light-emitting Diode,” Nature, 2020, 586(7829), pp. 385-389.
  •  
  • 10. Yang, Z.W., et al., “Inkjet-printed Blue InP/ZnS/ZnS Quantum Dot Light-emitting Diodes,” Chemical Engineering Journal, 2022, 450.
  •  
  • 11. Hines, M.A. and Guyot-Sionnest, P., “Bright UV-blue Luminescent Colloidal ZnSe Nanocrystals,” Journal of Physical Chemistry B, 1998, 102(19), pp. 3655-3657.
  •  
  • 12. Gao, M., et al., “Bulk-like ZnSe Quantum Dots Enabling Efficient Ultranarrow Blue Light-Emitting Diodes,” Nano Lett, 2021, 21(17), pp. 7252-7260.
  •  
  • 13. Cho, S., et al., “Air-Stable and Environmentally Friendly Full Color-Emitting ZnSeTe/ZnSe/ZnS Quantum Dots for Display Applications,” ACS Applied Nano Materials, 2022, 5(12), pp. 18905-18911.
  •  
  • 14. Bi, Y., et al., “Reducing Emission Linewidth of Pure-Blue ZnSeTe Quantum Dots through Shell Engineering toward High Color Purity Light-Emitting Diodes,” Small, 2023, 19(45), pp. e2303247.
  •  
  • 15. He, L., et al., “Achieving Near-unity Quantum Yield in Blue ZnSeTe Quantum Dots Through NH4F Molecular-assisted Synthesis for Highly Efficient Light-emitting Diodes,” Chemical Engineering Journal, 2024, 489.
  •  
  • 16. Long, Z.W., et al., “A Reactivity-controlled Epitaxial Growth Strategy for Synthesizing Large Nanocrystals,” Nature Synthesis, 2023, 2(3), pp. 296-304.
  •  
  • 17. Azadinia, M. and Aziz, H., “Deciphering the Causes of the Rapid Electroluminescence Loss in Blue Quantum Dot Light‐Emitting Devic-es,” Advanced Optical Materials, Vol. 13, 2024.
  •  
  • 18. Gao, P., Chen, Z., and Chen, S., “Electron-Induced Degradation in Blue Quantum-Dot Light-Emitting Diodes,” Advanced Materials, 2024, 36(7), pp. e2309123.
  •  
  • 19. Pandey, S.C., et al., “Thermodynamic Instability of ZnSe/ZnS Core/shell Quantum Dots,” Journal of Applied Physics, 2012, 111(11).
  •  
  • 20. Chen, S., et al., “On the Degradation Mechanisms of Quantum-dot Light-emitting Diodes,” Nat Commun, 2019, 10(1), pp. 765.
  •  
  • 21. Sun, X., et al., “Hole-Injection-Barrier Effect on the Degradation of Blue Quantum-Dot Light-Emitting Diodes,” ACS Nano, 2024.
  •  
  • 22. Houtepen, A.J., et al., “On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals,” Chemistry of Materials, 2017, 29(2), pp. 752-761.
  •  
  • 23. Busby, E., et al., “Effect of Surface Stoichiometry on Blinking and Hole Trapping Dynamics in CdSe Nanocrystals,” The Journal of Physi-cal Chemistry C, 2015, 119(49), pp. 27797-27803.
  •  
  • 24. Evans, C.M., Evans, M.E., and Krauss, T.D., “Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation,” Journal of the American Chemical Society, 2010, 132(32), pp. 10973-10975.
  •  
  • 25. Yu, K., et al., “Effect of Tertiary and Secondary Phosphines on Low-Temperature Formation of Quantum Dots,” Angewandte Chemie-International Edition, 2013, 52(18), pp. 4823-4828.
  •  
  • 26. He, J., et al., “Overcoming Side Reaction Effects in the Colloidal Synthesis of ZnSe/ZnS Core/shell Quantum Dots with an Etching Strategy,” Nano Research, 2024, 17(8), pp. 7020-7026.
  •  
  • 27. Kwak, J., et al., “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Letters, 2012, 12(5), pp. 2362-2366.
  •  
  • 28. Cho, O.L., et al., “Investigation of Operation and Degradation Mechanisms in ZnTeSe Blue Quantum-dot Light-emitting Diodes by Iden-tifying Recombination Zone,” Nano Research, 2024, 17(7), pp. 6527-6533.
  •  
  • 29. Jung, J., et al., “Crafting Core/Graded Shell-Shell Quantum Dots with Suppressed Re-absorption and Tunable Stokes Shift as High Op-tical Gain Materials,” Angewandte Chemie-international Edition, 2016, 55(16), pp. 5071-5075.
  •  
  • 30. Zhao, B., et al., “High Efficiency Blue Light-emitting Devices Based on Quantum Dots with Core-shell Structure Design and Surface Modification,” RSC Advances, 2021, 11(23), pp. 14047-14052.
  •  
  • 31. Liu, M., et al., “Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks,” ACS Energy Letters, 2019, 4(6), pp. 1225-1230.
  •  
  • 32. Zhang, H., et al., “Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands,” ACS Nano, 2014, 8(7), pp. 7359-7369.
  •  
  • 33. Bozyigit, D. and V. Wood, “Challenges and Solutions for High-efficiency Quantum Dot-based LEDs,” MRS Bulletin, 2013, 38(9), pp. 731-736.
  •  
  • 34. Neo, D.C.J., et al., “Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells,” Chemistry of Materials, 2014, 26(13), pp. 4004-4013.
  •  
  • 35. Yoo, J.Y., Choi, Y.J., and Kim, J.G., “Synthesis of Narrow Blue Emission Gradient ZnSeS Quantum Dots and Their Quantum Dot Light-emitting Diode Device Performance,” Journal of Luminescence, 2021, 240.
  •  
  • 36. Kirkwood, N., et al., “Finding and Fixing Traps in II-VI and III-V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation,” Journal of the American Chemical Society, 2018, 140(46), pp. 15712-15723.
  •  
  • 37. Xiang, C.Y., et al., “High Efficiency and Stability of Ink-jet Printed Quantum Dot Light Emitting Diodes,” Nature Communications, 2020, 11(1).
  •  
  • 38. Fei, W.L., et al., “X-Type Ligands Effect on the Operational Stability of Heavy-Metal-Free Quantum Dot Light-Emitting Diodes,” Nano Lett, 2024, 24(44), pp. 14066-14072.
  •  
  • 39. ee, Y.J., et al., “Crystallographic and Photophysical Analysis on Facet-Controlled Defect-Free Blue-Emitting Quantum Dots,” Adv Mater, 2024, 36(16), pp. e2311719.
  •  
  • 40. Guan, Z., et al., “Surface Defects Passivation of ZnSeTe/ZnSe/ZnS Quantum Dots by Iodine Ions for Highly Efficient Blue Light‐Emitting Diodes,” Advanced Optical Materials, 2024, 12(35).
  •  
  • 41. heng, Z., et al., “Bromide Decorated Eco‐Friendly ZnSeTe/ZnSe/ZnS Quantum Dots for Efficient Blue Light‐Emitting Diodes,” Advanced Materials Interfaces, 2022, 10(5).
  •  
  • 42. Lee, B.J., et al., “Bright and Stable ZnSeTe Core/Shell Quantum Dots Enabled by Surface Passivation with Organozinc Halide Ligands,” Chemistry of Materials, 2023, 36(1), pp. 471-481.
  •  
  • 43. Liu, Z., et al., “Short-Wave Infrared Light-Emitting Diodes Using Colloidal CuInS2 Quantum Dots with ZnI2 Dual-Passivation,” ACS Nano, 2024, 18(32), pp. 21523-21533.
  •  
  • 44. Doe, T., et al., “Evaluation of Degradation Behavior in Quantum Dot Light-emitting Diode with Different Hole Transport Materials via Transient Electroluminescence,” Applied Physics Letters, 2021, 118(20).
  •  
  • 45. Heo, S.B., et al., “Highly Efficient and Low Turn-on Voltage Quantum-dot Light-emitting Diodes Using a ZnMgO/ZnO Double Electron Transport Layer,” Current Applied Physics, 2021, 29, pp. 107-113.
  •  
  • 46. Wu, Q.Q., et al., “Efficient Tandem Quantum-Dot LEDs Enabled by an Inorganic Semiconductor-Metal-Dielectric Interconnecting Layer Stack,” Advanced Materials, 2022, 34(4).
  •  
  • 47. Lei, S.Y., et al., “Revisiting Hole Injection in Quantum Dot Light-Emitting Diodes,” Advanced Functional Materials, 2023, 33(48).
  •  
  • 48. Shi, Y.L., et al., “High-efficiency Quantum Dot Light-emitting Diodes Employing Lithium Salt Doped Poly-(9-vinlycarbazole)as a Hole-transporting Layer,” Journal of Materials Chemistry C, 2017, 5(22), pp. 5372-5377.
  •  
  • 49. Ho, M.D., et al., “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Applied Materials & Interfaces, 2013, 5(23), pp. 12369-12374.
  •  
  • 50. Li, Q., et al., “Enhancing Performance of Blue ZnTeSe-based Quantum Dot Light-emitting Diodes Through Dual Dipole Layers Engineer-ing,” Applied Physics Letters, 2023, 123(6).
  •  
  • 51. Lin, L., et al., “Enhancing the Efficiency and Stability of ZnSe Pure Blue Quantum Dot Light-emitting Diodes via Ionic Liquid Doping,” Journal of Materials Chemistry C, 2024, 12(28), pp. 10408-10416.
  •  
  • 52. Wang, F., et al., “High‐Performance Blue Quantum‐Dot Light‐Emitting Diodes by Alleviating Electron Trapping,” Advanced Optical Ma-terials, 2022, 10(13).
  •  
  • 53. Kim, S.-K., et al., “Localized Surface Plasmon-enhanced Blue Electroluminescent Device Based on ZnSeTe Quantum Dots and AuAg Nanoparticles,” Inorganic Chemistry Frontiers, 2022, 9(13), pp. 3138-3147.
  •  
  • 54. Cho, H., et al., “Highly Efficient Deep Blue Cd-Free Quantum Dot Light-Emitting Diodes by a p-Type Doped Emissive Layer,” Small, 2020, 16(40), pp. e2002109.
  •  
  • 55. Zheng, Z., et al., “Blue-Emitting ZnSeTe/ZnSe/ZnS Quantum Dots for Efficient Electroluminescent Application,” ACS Applied Nano Ma-terials, 2024, 7(11), pp. 13166-13172.
  •  
  • 56. Han, C.-Y., et al., “More Than 9% Efficient ZnSeTe Quantum Dot-Based Blue Electroluminescent Devices,” ACS Energy Letters, 2020, 5(5), pp. 1568-1576.
  •  
  • 57. Yoon, S.Y., et al., “Efficient, Stable Blue Light‐Emitting Diodes Enabled by Heterostructural Alteration of ZnSeTe Quantum Dot and Functionalization of ZnMgO,” Advanced Optical Materials, 2024, 12(32).
  •  
  • 58. Park, S., et al., “Development of Highly Efficient Blue-emitting ZnSexTe1-x/ZnSe/ZnS Quantum Dots and Their Electroluminescence Application,” Journal of Industrial and Engineering Chemistry, 2020, 88, pp. 348-355.

  •  

This Article

Correspondence to

  • Jaehan Jung
  • Department of Materials Science and Engineering, Seoul National University of Science and Technology

  • E-mail: jaehan@seoultech.ac.kr