Special Issue
  • Preparation of Tin Oxide Nanoparticles and Carbon Nanotube Fiber Nanocomposites for High-Performance Lithium-Ion Battery Anodes
  • Yumin Lee*, Seungho Ha*, Nayoung Ku*, Kyunbae Lee*, Yeonsu Jung*, Taehoon Kim*†

  • *Composites & Convergence Materials Research Division, Korea Institute of Materials Science, Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Shin, P.-S., Kim, J.-H., DeVries, K.L., and Park, J.-M., “Evaluation of dispersion of MWCNT/cellulose composites sheet using electrical resistance 3D-mapping for strain sensing,” Functional Composites and Structures, Vol. 2, No. 2, 2020, pp. 025004.
  •  
  • 2. Smail, F., Boies, A., and Windle, A., “Direct spinning of CNT fibres: Past, present and future scale up,” Carbon, Vol. 152, 2019, pp. 218-232.
  •  
  • 3. Taylor, L.W., Dewey, O.S., Headrick, R.J., Komatsu, N., Peraca, N.M., Wehmeyer, G., Kono, J., and Pasquali, M., “Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers,” Carbon, Vol. 171, 2021, pp. 689-694.
  •  
  • 4. Weller, L., Smail, F.R., Elliott, J.A., Windle, A.H., Boies, A.M., and Hochgreb, S., “Mapping the parameter space for direct-spun carbon nanotube aerogels,” Carbon, Vol. 146, 2019, pp. 789-812.
  •  
  • 5. Lee, S., Kim, J.-G., Yu, H., Lee, D.-M., Hong, S., Kim, S.M., Choi, S.-J., Kim, N.D., and Jeong, H.S., “Flexible supercapacitor with superior length and volumetric capacitance enabled by a single strand of ultra-thick carbon nanotube fiber,” Chemical Engineering Journal, Vol. 453, 2023, pp. 139974.
  •  
  • 6. Na, Y.W., Cheon, J.Y., Kim, J.H., Jung, Y., Lee, K., Park, J.S., Park, J.Y., Song, K.S., Lee, S.B., and Kim, T., “All-in-one flexible supercapacitor with ultrastable performance under extreme load,” Science Advances, Vol. 8, No. 1, 2022, pp. eabl8631.
  •  
  • 7. Zhang, Q., Sun, J., Pan, Z., Zhang, J., Zhao, J., Wang, X., Zhang, C., Yao, Y., Lu, W., and Li, Q., “Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density,” Nano Energy, Vol. 39, 2017, pp. 219-228.
  •  
  • 8. Choi, C., Kim, S.H., Sim, H.J., Lee, J.A., Choi, A.Y., Kim, Y.T., Lepró, X., Spinks, G.M., Baughman, R.H., and Kim, S.J., “Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors,” Scientific Reports, Vol. 5, No. 1, 2015, pp. 9387.
  •  
  • 9. Liu, Q., Yang, J., Luo, X., Miao, Y., Zhang, Y., Xu, W., Yang, L., Liang, Y., Weng, W., and Zhu, M., “Fabrication of a fibrous MnO2@ MXene/CNT electrode for high-performance flexible supercapacitor,” Ceramics International, Vol. 46, No. 8, 2020, pp. 11874-11881.
  •  
  • 10. Liang, J., Li, F., and Cheng, H.-M., “Flexible supercapacitors: Tuning with dimensions,” Energy Storage Materials, Vol. 5, 2016, pp. A1-A3.
  •  
  • 11. Jung, Y., Jeong, Y.C., Kim, J.H., Kim, Y.S., Kim, T., Cho, Y.S., Yang, S.J., and Park, C.R., “One step preparation and excellent performance of CNT yarn based flexible micro lithium ion batteries,” Energy Storage Materials, Vol. 5, 2016, pp. 1-7.
  •  
  • 12. Ren, J., Zhang, Y., Bai, W., Chen, X., Zhang, Z., Fang, X., Weng, W., Wang, Y., and Peng, H., “Elastic and wearable wire‐shaped lithium‐ion battery with high electrochemical performance,” Angewandte Chemie, Vol. 126, No. 30, 2014, pp. 7998-8003.
  •  
  • 13. Ku, N., Cheon, J., Lee, K., Jung, Y., Yoon, S.-Y., and Kim, T., “Hydrophilic and conductive carbon nanotube fibers for high-performance lithium-ion batteries,” Materials, Vol. 14, No. 24, 2021, pp. 7822.
  •  
  • 14. Jeffries, A.M., Wang, Z., Opila, R.L., and Bertoni, M.I., “Tin sensitization and silver activation on indium tin oxide surfaces,” Applied Surface Science, Vol. 588, 2022, pp. 152916.
  •  
  • 15. Sun, L., Si, H., Zhang, Y., Shi, Y., Wang, K., Liu, J., and Zhang, Y., “Sn-SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries,” Journal of Power Sources, Vol. 415, 2019, pp. 126-135.
  •  
  • 16. Li, H., Zhang, B., Zhou, Q., Zhang, J., Yu, W., Ding, Z., Tsiamtsouri, M.A., Zheng, J., and Tong, H., “Dual-carbon confined SnO2 as ultralong-life anode for Li-ion batteries,” Ceramics International, Vol. 45, No. 6, 2019, pp. 7830-7838.
  •  
  • 17. Cho, J.S., and Kang, Y.C., “Nanofibers comprising yolk–shell Sn@ void@ SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties,” Small, Vol. 11, No. 36, 2015, pp. 4673-4681.
  •  
  • 18. Zhou, X., Dai, Z., Liu, S., Bao, J., and Guo, Y.G., “Ultra‐uniform SnOx/carbon nanohybrids toward advanced lithium‐ion battery anodes,” Advanced Materials, Vol. 26, No. 23, 2014, pp. 3943-3949.
  •  
  • 19. Kim, T., Shin, J., Lee, K., Jung, Y., Lee, S.B., and Yang, S.J., “A universal surface modification method of carbon nanotube fibers with enhanced tensile strength,” Composites Part A: Applied Science and Manufacturing, Vol. 140, 2021, pp. 106182.
  •  
  • 20. Kim, C., Noh, M., Choi, M., Cho, J., and Park, B., “Critical size of a nano SnO2 electrode for Li-secondary battery,” Chemistry of Materials, Vol. 17, No. 12, 2005, pp. 3297-3301.
  •  
  • 21. Zhu, J., Zhang, G., Yu, X., Li, Q., Lu, B., and Xu, Z., “Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries,” Nano Energy, Vol. 3, 2014, pp. 80-87.
  •  
  • 22. Nguyen, T.P., and Kim, I.T., “Self-assembled few-layered MoS2 on SnO2 anode for enhancing lithium-ion storage,” Nanomaterials, Vol. 10, No. 12, 2020, pp. 2558.
  •  
  • 23. Liu, K., Zhu, S., Dong, X., Huang, H., and Qi, M., “Ionic Liquid‐Assisted Anchoring SnO2 Nanoparticles on Carbon Nanotubes as Highly Cyclable Anode of Lithium Ion Batteries,” Advanced Materials Interfaces, Vol. 7, No. 14, 2020, pp. 1901916.
  •  
  • 24. Ding, L., He, S., Miao, S., Jorgensen, M.R., Leubner, S., Yan, C., Hickey, S.G., Eychmüller, A., Xu, J., and Schmidt, O.G., “Ultrasmall SnO2 nanocrystals: hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage,” Scientific Reports, Vol. 4, No. 1, 2014, pp. 4647.
  •  
  • 25. Lee, K., Kim, T., Lee, S.B., and Jung, B.M., “Effect of pretreatment on magnetic nanoparticle growth on graphene surface and magnetic performance in electroless plating,” Journal of Nanomaterials, Vol. 2019, No. 1, 2019, pp. 5602742.
  •  
  • 26. Zhang, S., Zhao, H., Ma, W., Dang, L., Yang, S., Zhang, Z., Qiu, D., Feng, Y., and Mi, J., “Rational synthesis of Sn/SnO2/CNFs composite with well-defined structure as anode material for sodium-ion batteries,” Materials Letters, Vol. 336, 2023, pp. 133877.
  •  
  • 27. Xu, Y., Liu, Q., Zhu, Y., Liu, Y., Langrock, A., Zachariah, M.R., and Wang, C., “Uniform nano-Sn/C composite anodes for lithium ion batteries,” Nano Letters, Vol. 13, No. 2, 2013, pp. 470-474.
  •  
  • 28. Liang, S., Yu, K., Li, Y., and Liang, C., “Rice husk-derived carbon@ SnO2@ graphene anode with stable electrochemical performance used in lithium-ion batteries,” Materials Research Express, Vol. 7, No. 1, 2020, pp. 015021.
  •  
  • 29. Bagheri-Mohagheghi, M.-M., Shahtahmasebi, N., Alinejad, M., Youssefi, A., and Shokooh-Saremi, M., “The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing–complexing sol–gel method,” Physica B: Condensed Matter, Vol. 403, No. 13-16, 2008, pp. 2431-2437.
  •  
  • 30. Sivashanmugam, A., Kumar, T.P., Renganathan, N., Gopukumar, S., Wohlfahrt-Mehrens, M., and Garche, J., “Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries,” Journal of Power Sources, Vol. 144, No. 1, 2005, pp. 197-203.
  •  
  • 31. Zhang, S., “Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries,” npj Computational Materials, Vol. 3, No. 1, 2017, pp. 7.
  •  
  • 32. Yaroslavtsev, A.B., and Stenina, I.A., “Carbon coating of electrode materials for lithium-ion batteries,” Surface Innovations, Vol. 9, No. 2–3, 2020, pp. 92-110.
  •  
  • 33. Kebede, M.A., “Tin oxide–based anodes for both lithium-ion and sodium-ion batteries,” Current Opinion in Electrochemistry, Vol. 21, 2020, pp. 182-187.
  •  

This Article

Correspondence to

  • Taehoon Kim
  • Composites & Convergence Materials Research Division, Korea Institute of Materials Science, Korea

  • E-mail: tkim67@kims.re.kr