Special Issue
  • Facile One-pot Synthesis of Highly Conductive SnO2/Graphene Composite for Lithium Ion Batteries
  • Jae Yeong Cheon*, Seungho Ha*, Kyunbae Lee*, Yeonsu Jung*, Taehoon Kim*†

  • *Composites Research Division, Korea Institute of Materials Science (KIMS), Korea

  • 고전도성 SnO2/Graphene 복합체의 효율적인 One-Pot 합성법과 리튬 이온 배터리 응용
  • 천재영* · 하승호* · 이균배* · 정연수* · 김태훈*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Pumera, M., “Graphene-based Nanomaterials for Energy Storage,” Energy & Environmental Science, Vol. 4, No. 3, 2011, pp. 668-674.
  •  
  • 2. Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., and Gogotsi, Y., “Energy Storage: The Future Enabled by Nanomaterials,” Science, Vol. 366, No. 6468, 2019, pp. eaan8285.
  •  
  • 3. Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S., “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science, Vol. 332, No. 6037, 2011, pp. 1537-1541.
  •  
  • 4. Chang, M.S., Kim, T., Kang, J.H., Park, J., and Park, C.R., “The Effect of Surface Characteristics of Reduced Graphene Oxide on the Performance of a Pseudocapacitor,” 2D Materials, Vol. 2, No. 1, 2015, pp. 014007.
  •  
  • 5. Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H., “Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction,” Nature Materials, Vol. 10, No. 10, 2011, pp. 780-786.
  •  
  • 6. Liang, Y., Wang, H., Zhou, J., Li, Y., Wang, J., Regier, T., and Dai, H., “Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts,” Journal of the American Chemical Society, Vol. 134, No. 7, 2012, pp. 3517-3523.
  •  
  • 7. Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., “The Chemistry of Graphene Oxide,” Chemical Society Reviews, Vol. 39, No. 1, 2010, pp. 228-240.
  •  
  • 8. Loh, K.P., Bao, Q., Eda, G., and Chhowalla, M., “Graphene Oxide as a Chemically Tunable Platform for Optical Applications,” Nature Chemistry, Vol. 2, No. 12, 2010, pp. 1015-1024.
  •  
  • 9. Yao, J., Shen, X., Wang, B., Liu, H., and Wang, G., “In situ Chemical Synthesis of SnO2–graphene Nanocomposite as Anode Materials for Lithium-ion Batteries,” Electrochemistry Communications, Vol. 11, No. 10, 2009, pp. 1849-1852.
  •  
  • 10. Paek, S.-M., Yoo, E., and Honma, I., “Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure,” Nano Letters, Vol. 9, No. 1, 2009, pp. 72-75.
  •  
  • 11. Wang, Z., Zhang, H., Li, N., Shi, Z., Gu, Z., and Cao, G., “Laterally Confined Graphene Nanosheets and Graphene/SnO2 Composites as High-rate Anode Materials for Lithium-ion Batteries,” Nano Research, Vol. 3, No. 10, 2010, pp. 748-756.
  •  
  • 12. Zhang, M., Lei, D., Du, Z., Yin, X., Chen, L., Li, Q., Wang, Y., and Wang, T., “Fast Synthesis of SnO2/graphene Composites by Reducing Graphene Oxide with Stannous Ions,” Journal of Materials Chemistry, Vol. 21, No. 6, 2011, pp. 1673-1676.
  •  
  • 13. Zhu, X., Zhu, Y., Murali, S., Stoller, M.D., and Ruoff, R.S., “Reduced Graphene Oxide/tin Oxide Composite as an Enhanced Anode Material for Lithium Ion Batteries Prepared by Homogenous Coprecipitation,” Journal of Power Sources, Vol. 196, No. 15, 2011, pp. 6473-6477.
  •  
  • 14. Liu, L., An, M., Yang, P., and Zhang, J., “Superior Cycle Performance and High Reversible Capacity of SnO2/graphene Composite as an Anode Material for Lithium-ion Batteries,” Scientific Reports, Vol. 5, No. 1, 2015, pp. 9055.
  •  
  • 15. Han, J., Kong, D., Lv, W., Tang, D.-M., Han, D., Zhang, C., Liu, D., Xiao, Z., Zhang, X., Xiao, J., He, X., Hsia, F.-C., Zhang, C., Tao, Y., Golberg, D., Kang, F., Zhi, L., and Yang, Q.-H., “Caging Tin Oxide in Three-dimensional Graphene Networks for Superior Volumetric Lithium Storage,” Nature Communications, Vol. 9, No. 1, 2018, pp. 402.
  •  
  • 16. Su, F.-Y., You, C., He, Y.-B., Lv, W., Cui, W., Jin, F., Li, B., Yang, Q.-H., and Kang, F., “Flexible and Planar Graphene Conductive Additives for Lithium-ion Batteries,” Journal of Materials Chemistry, Vol. 20, No. 43, 2010, pp. 9644-9650.
  •  
  • 17. Hou, C.-C., Brahma, S., Weng, S.-C., Chang, C.-C., and Huang, J.-L., “Facile, Low Temperature Synthesis of SnO2/reduced Graphene Oxide Nanocomposite as Anode Material for Lithium-ion Batteries,” Applied Surface Science, Vol. 413, 2017, pp. 160-168.
  •  
  • 18. Song, D., Wang, S., Liu, R., Jiang, J., Jiang, Y., Huang, S., Li, W., Chen, Z., and Zhao, B., “Ultra-small SnO2 Nanoparticles Decorated on Three-dimensional Nitrogen-doped Graphene Aerogel for High-performance Bind-free Anode Material,” Applied Surface Science, Vol. 478, 2019, pp. 290-298.
  •  
  • 19. Jin, R., Meng, Y., and Li, G., “Multiwalled Carbon Nanotubes@C@SnO2 Quantum Dots and SnO2 Quantum Dots@C as High Rate Anode Materials for Lithium-ion Batteries,” Applied Surface Science, Vol. 423, 2017, pp. 476-483.
  •  
  • 20. Li, X., Sun, X., Gao, Z., Hu, X., Guo, J., Cai, S., Guo, R., Ji, H., Zheng, C., and Hu, W., “Fabrication of Porous Carbon Sphere@SnO2@carbon Layer Coating Composite as High Performance Anode for Sodium-ion Batteries,” Applied Surface Science, Vol. 433, 2018, pp. 713-722.
  •  
  • 21. Song, J.-S., Cho, G.-B., Kim, K.-W., Ahn, H.-J., Kim, H.-S., Ahn, J.-H., and Cho, K.-K., “Fabrication of Multilayer Graphene-encapsulated Sn/SnO2 Nanocomposite as an Anode Material for Lithium-ion Batteries and Its Electrochemical Properties,” Applied Surface Science, Vol. 481, 2019, pp. 736-740.
  •  
  • 22. Kim, T., Han, G., and Jung, Y., “Facile Fabrication of Polyvinyl Alcohol/edge-selectively Oxidized Graphene Composite Fibers,” Materials, Vol. 12, No. 21, 2019, pp. 3525.
  •  
  • 23. Park, J., Kim, Y.S., Sung, S.J., Kim, T., and Park, C.R., “Highly Dispersible Edge-selectively Oxidized Graphene with Improved Electrical Performance,” Nanoscale, Vol. 9, No. 4, 2017, pp. 1699-1708.
  •  
  • 24. Kim, T., Lee, J., Lee, K., Park, B., Jung, B.M., and Lee, S.B., “Magnetic and Dispersible FeCoNi-graphene Film Produced without Heat Treatment for Electromagnetic Wave Absorption,” Chemical Engineering Journal, Vol. 361, 2019, pp. 1182-1189.
  •  
  • 25. Cho, Y.M., Kim, K.T., Lee, G.S., and Kim, S.H., “The Role of Edge-oxidized Graphene to Improve the Thermopower of p-type Bismuth Telluride-based Thick Films,” Applied Surface Science, Vol. 476, 2019, pp. 533-538.
  •  
  • 26. Lee, K., Kim, T., Lee, S.B., and Jung, B.M., “Effect of Pretreatment on Magnetic Nanoparticle Growth on Graphene Surface and Magnetic Performance in Electroless Plating,” Journal of Nanomaterials, Vol. 2019, No. 1, 2019, pp. 5602742.
  •  
  • 27. Lee, K., Lee, J., Jung, B.M., Lee, S.B., and Kim, T., “Dispersion Characteristics of Magnetic Particle/graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites,” Composites Research, Vol. 31, No. 3, 2018, pp. 111-116.
  •  
  • 28. Deng, D., and Lee, J.Y., “Hollow Core-shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage,” Chemistry of Materials, Vol. 20, No. 5, 2008, pp. 1841-1846.
  •  
  • 29. Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A., and Li, J., “In situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode,” Science, Vol. 330, No. 6010, 2010, pp. 1515-1520.
  •  
  • 30. Hu, R., Chen, D., Waller, G., Ouyang, Y., Chen, Y., Zhao, B., Rainwater, B., Yang, C., Zhu, M., and Liu, M., “Dramatically Enhanced Reversibility of Li2O in SnO2-based Electrodes: the Effect of Nanostructure on High Initial Reversible Capacity,” Energy & Environmental Science, Vol. 9, No. 2, 2016, pp. 595-603.
  •  
  • 31. Kim, H., and Laitinen, H.A., “Composition and Conductivity of Tin Oxide Films Prepared by Pyrohydrolytic Decomposition of Tin(IV) Compounds,” Journal of the American Ceramic Society, Vol. 58, No. 1-2, 1975, pp. 23-25.
  •  
  • 32. Zhao, Y., Wang, X., Yang, S., Kuttner, E., Taylor, A.A., Salemmilani, R., Liu, X., Moskovits, M., Wu, B., Dehestani, A., Li, J.-F., Chisholm, M.F., Tian, Z.-Q., Fan, F.-R., Jiang, J., and Stucky, G.D., “Correction to “Protecting the Nanoscale Properties of Ag Nanowires with a Solution-Grown SnO2 Monolayer as Corrosion Inhibitor,” Journal of the American Chemical Society, Vol. 141, No. 44, 2019, pp. 17950-17950.
  •  
  • 33. Fong, R., von Sacken, U., and Dahn, J.R., “Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells,” Journal of the Electrochemical Society, Vol. 137, No. 7, 1990, pp. 2009.
  •  
  • 34. Lou, X.W., Chen, J.S., Chen, P., and Archer, L.A., “One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties,” Chemistry of Materials, Vol. 21, No. 13, 2009, pp. 2868-2874.
  •  
  • 35. Lou, X.W., Wang, Y., Yuan, C., Lee, J.Y., and Archer, L.A., “Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity,” Advanced Materials, Vol. 18, No. 17, 2006, pp. 2325-2329.
  •  
  • 36. Lou, X.W., Li, C.M., and Archer, L.A., “Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage,” Advanced Materials, Vol. 21, No. 24, 2009, pp. 2536-2539.
  •  
  • 37. Heiskanen, S.K., Kim, J., and Lucht, B.L., “Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries,” Joule, Vol. 3, No. 10, 2019, pp. 2322-2333.
  •  
  • 38. Prabakar, S.J.R., Hwang, Y.-H., Bae, E.-G., Shim, S., Kim, D., Lah, M.S., Sohn, K.-S., and Pyo, M., “SnO2/Graphene Composites with Self-Assembled Alternating Oxide and Amine Layers for High Li-Storage and Excellent Stability,” Advanced Materials, Vol. 25, No. 24, 2013, pp. 3307-3312.
  •  
  • 39. Lian, P., Wang, J., Cai, D., Ding, L., Jia, Q., and Wang, H., “Porous SnO2@C/graphene Nanocomposite with 3D Carbon Conductive Network as a Superior Anode Material for Lithium-ion Batteries,” Electrochimica Acta, Vol. 116, 2014, pp. 103-110.
  •  
  • 40. Wang, X., Lv, L., Cheng, Z., Gao, J., Dong, L., Hu, C., and Qu, L., “High-Density Monolith of N-Doped Holey Graphene for Ultrahigh Volumetric Capacity of Li-Ion Batteries,” Advanced Energy Materials, Vol. 6, No. 6, 2016, pp. 1502100.
  •  
  • 41. Wang, G.-Z., Feng, J.-M., Dong, L., Li, X.-F., and Li, D.-J., “SnO2 Particles Anchored on N-doped Graphene Surface as Sodium-ion Battery Anode with Enhanced Electrochemical Capability,” Applied Surface Science, Vol. 396, 2017, pp. 269-277.
  •  
  • 42. Liu, H., Chen, S., Wang, G., and Qiao, S.Z., “Ordered Mesoporous Core/Shell SnO2/C Nanocomposite as High-Capacity Anode Material for Lithium-Ion Batteries,” Chemistry – A European Journal, Vol. 19, No. 50, 2013, pp. 16897-16901.
  •  
  • 43. Zu, L., Su, Q., Zhu, F., Chen, B., Lu, H., Peng, C., He, T., Du, G., He, P., Chen, K., Yang, S., Yang, J., and Peng, H., “Antipulverization Electrode Based on Low-Carbon Triple-Shelled Superstructures for Lithium-Ion Batteries,” Advanced Materials, Vol. 29, No. 34, 2017, pp. 1701494.
  •  
  • 44. Zhou, X., Yu, L., and Lou, X.W., “Formation of Uniform N-doped Carbon-Coated SnO2 Submicroboxes with Enhanced Lithium Storage Properties,” Advanced Energy Materials, Vol. 6, No. 14, 2016, pp. 1600451.
  •  
  • 45. Dong, W., Xu, J., Wang, C., Lu, Y., Liu, X., Wang, X., Yuan, X., Wang, Z., Lin, T., Sui, M., Chen, I.-W., and Huang, F., “A Robust and Conductive Black Tin Oxide Nanostructure Makes Efficient Lithium-Ion Batteries Possible,” Advanced Materials, Vol. 29, No. 24, 2017, pp. 1700136.
  •  
  • 46. Zhang, J., Wan, J., Wang, J., Ren, H., Yu, R., Gu, L., Liu, Y., Feng, S., and Wang, D., “Hollow Multi-Shelled Structure with Metal–Organic-Framework-Derived Coatings for Enhanced Lithium Storage,” Angewandte Chemie International Edition, Vol. 58, No. 16, 2019, pp. 5266-5271.
  •  
  • 47. Wang, H.-G., Wu, Q., Wang, Y., Wang, X., Wu, L., Song, S., and Zhang, H., “Molecular Engineering of Monodisperse SnO2 Nanocrystals Anchored on Doped Graphene with High-Performance Lithium/Sodium-Storage Properties in Half/Full Cells,” Advanced Energy Materials, Vol. 9, No. 3, 2019, pp. 1802993.
  •  
  • 48. Gao, S., Wang, N., Li, S., Li, D., Cui, Z., Yue, G., Liu, J., Zhao, X., Jiang, L., and Zhao, Y., “A Multi-Wall Sn/SnO2@Carbon Hollow Nanofiber Anode Material for High-Rate and Long-Life Lithium-Ion Batteries,” Angewandte Chemie International Edition, Vol. 59, No. 6, 2020, pp. 2465-2472.
  •  
  • 49. Winter, M., and Besenhard, J.O., “Electrochemical Lithiation of Tin and Tin-based Intermetallics and Composites,” Electrochimica Acta, Vol. 45, No. 1, 1999, pp. 31-50.
  •  
  • 50. Li, L., Kovalchuk, A., and Tour, J.M., “SnO2-reduced Graphene Oxide Nanoribbons as Anodes for Lithium Ion Batteries with Enhanced Cycling Stability,” Nano Research, Vol. 7, No. 9, 2014, pp. 1319-1326.
  •  
  • 51. Jiang, B., He, Y., Li, B., Zhao, S., Wang, S., He, Y.-B., and Lin, Z., “Polymer-Templated Formation of Polydopamine-Coated SnO2 Nanocrystals: Anodes for Cyclable Lithium-Ion Batteries,” Angewandte Chemie International Edition, Vol. 56, No. 7, 2017, pp. 1869-1872.
  •  

This Article

Correspondence to

  • Taehoon Kim
  • Composites Research Division, Korea Institute of Materials Science (KIMS), Korea

  • E-mail: tkim67@kims.re.kr