Special Issue
  • Sustainable Water Purification Technologies for the Water-Energy Nexus: Chemical Interface Engineering and Structural Approaches
  • Myeonghwan Shin*, Seohyeon Lee*, Yoona Kim*, Chiyoung Park*†

  • * Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology

  • 물-에너지 넥서스 구현을 위한 지속가능한 수처리 기술: 계면화학적 제어와 구조적 접근
  • 신명환* · 이서현* · 김윤아* · 박치영*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Sholl, D. S., and Lively, R. P., “Seven chemical separations to change the world,” Nature, Vol. 532, No. 7600, 2016, pp. 435-437.
  •  
  • 2. He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., and Bryan, B. A., “Future global urban water scarcity and potential solutions,” Nature Communications, Vol. 12, No. 1, 2021, 4667.
  •  
  • 3. Obaideen, K., Shehata, N., Sayed, E. T., Abdelkareem, M. A., Mahmoud, M. S., and Olabi, A. G., “The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline,” Energy Nexus, Vol. 7, 2022, 100112.
  •  
  • 4. Ahmad, S., Jia, H., Chen, Z., Li, Q., and Xu, C., “Water-energy nexus and energy efficiency: A systematic analysis of urban water systems,” Renewable and Sustainable Energy Reviews, Vol. 134, 2020, 110381.
  •  
  • 5. Stambouli, A. B., and Flazi, S., “A review of the water-energy nexus,” Renewable and Sustainable Energy Reviews, Vol. 65, 2016, pp. 319-331.
  •  
  • 6. Deshmukh, A., Boo, C., Karanikola, V., Lin, S., Straub, A. P., Tong, T., Warsinger, D. M., and Elimelech M., “Membrane distillation at the water-energy nexus: limits, opportunities, and challenges,” Energy and Environmental Science, Vol. 11, No. 5, 2018, pp. 1177-1196.
  •  
  • 7. Singh, N. B., Nagpal, G., and Agrawal, S., “Water purification by using adsorbents: a review,” Environmental Technology and Innovation, Vol. 11, 2018, pp. 187-240.
  •  
  • 8. Rathi, B. S., and Kumar, P. S., “Application of adsorption process for effective removal of emerging contaminants from water and wastewater,” Environmental Pollution, Vol. 280, 2021, 116995.
  •  
  • 9. Basu, S., Ghosh, G., and Saha, S., “Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design,” Process Safety and Environmental Protection, Vol. 117, 2018, pp. 125-142.
  •  
  • 10. Gkika, D. A., Mitropoulos, A. C., and Kyzas, G. Z., “Why reuse spent adsorbents? The latest challenges and limitations,” Science of the Total Environment, Vol. 822, 2022, 153612.
  •  
  • 11. Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., and Yu, G., “Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review,” Separation and Purification Technology, Vol. 224, 2018, pp. 373-387.
  •  
  • 12. Biswas, S., Rashid, T. U., Debnath, T., Haque, P., and Rahman, M. M., “Application of chitosan-clay biocomposite beads for removal of heavy metal and dye from industrial effluent,” Journal of Composites Science, Vol. 4, No. 1, 2020, 16.
  •  
  • 13. Giri, A., Khakre, Y., Shreeraj, G., Dutta, T. K., Kundu, S., and Patra, A., “The order–disorder conundrum: a trade-off between crystalline and amorphous porous organic polymers for task-specific applications,” Journal of Materials Chemistry A, Vol. 10, No. 33, 2022, pp. 17077-17121.
  •  
  • 14. Quintas Salamba, M, Melo, R. L. F., da Silva Aires, F. I., de Matos Filho, J. R., Nascimento Dari, D., Luz Lima, F. L., Alcântara Araújo, S. F., da Costa Silva, L., Fernandes da Silva, L., Chirindza, E. A., and Sousa dos Santos, J. C., “Porosity of Activated Carbon in Water Remediation: A Bibliometric Review and Overview of Research Perspectives,” ACS Environmental Science and Technology Water, Vol. 5, No. 5, 2025, pp. 2070-2086.
  •  
  • 15. Klimenko, N., Winther-Nielsen, M., Smolin, S., Nevynna, L., and Sydorenko, J., “Role of the physico-chemical factors in the purification process of water from surface-active matter by biosorption,” Water Research, Vol. 36, No. 20, 2002, pp. 5132-5140.
  •  
  • 16. Alsbaiee, A., Smith, B. J., Xiao, L., Ling, Y., Helbling, D. E., and Dichtel, W. R., “Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer,” Nature, Vol. 529, No. 7585, 2016, pp. 190-194.
  •  
  • 17. Cho, W., Lee, D., Choi, G., Kim, J., Kojo, A. E., and Park, C., “Supramolecular engineering of amorphous porous polymers for rapid adsorption of micropollutants and solar‐powered volatile organic compounds management,” Advanced Materials, Vol. 34, No. 50, 2022, 2206982.
  •  
  • 18. Jin, Y., Voss, B. A., McCaffrey, R., Baggett, C. T., Noble, R. D., and Zhang, W., “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chemical Science, Vol. 3, No. 3, 2012, pp. 874-877.
  •  
  • 19. Giri, A., Sahoo, A., Dutta, T. K., and Patra, A., “Cavitand and molecular cage-based porous organic polymers,” ACS Omega, Vol. 5, No. 44, 2020, pp. 28413-28424.
  •  
  • 20. Chen, W., Chen, P., Zhang, G., Xing, G., Feng, Y., Yang, Y. W., and Chen, L., “Macrocycle-derived hierarchical porous organic polymers: synthesis and applications,” Chemical Society Reviews, Vol. 50, No. 20, 2021, pp. 11684-11714.
  •  
  • 21. Wang, X., Xie, L., Lin, K., Ma, W., Zhao, T., Ji, X., Alyami, M., Khashab, N, M., Wang, H., and Sessler, J. L., “Calix [4] pyrrole‐crosslinked porous polymeric networks for the removal of micropollutants from water,” Angewandte Chemie International Edition, Vol. 60, No. 13, 2021, pp. 7188-7196.
  •  
  • 22. Cevallos-Mendoza, J., Amorim, C. G., Rodríguez-Díaz, J. M., and Montenegro, M. D. C. B., “Removal of contaminants from water by membrane filtration: a review,” Membranes, Vol. 12, No. 6, 2022, 570.
  •  
  • 23. Wittbecker, E. L., and Morgan, P. W., “Interfacial polycondensation. I.,” Journal of Polymer Science, Vol. 40, No. 137, 1959, pp. 289-297.
  •  
  • 24. Shen, L., Cheng, R., Yi, M., Hung, W. S., Japip, S., Tian, L., Zhang, X., Jiang, S., Li, S., and Wang, Y., “Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving,” Nature Communications, Vol. 13, No. 1, 2022, 500.
  •  
  • 25. Villalobos, L. F., Huang, T., and Peinemann, K. V., “Cyclodextrin films with fast solvent transport and shape‐selective permeability,” Advanced Materials, Vol. 29, No. 26, 2017, 1606641.
  •  
  • 26. Liu, J., Hua, D., Zhang, Y., Japip, S., and Chung, T. S., “Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules,” Advanced Materials, Vol. 30, No. 11, 2018, 1705933.
  •  
  • 27. Li, X., Lin, W., Sharma, V., Gorecki, R., Ghosh, M., Moosa, B. A., Aristizabal, S., Hong, S., Khashab, N. M., and Nunes, S. P., “Polycage membranes for precise molecular separation and catalysis,” Nature Communications, Vol. 14, No. 1, 2023, 3112.
  •  
  • 28. Huang, T., Moosa, B. A., Hoang, P., Liu, J., Chisca, S., Zhang, G., AlYami, M., Khashab, N. M., and Nunes, S. P., “Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration,” Nature Communications, Vol. 11, No. 1, 2020, 5882.
  •  
  • 29. Jiang, Z., Dong, R., Evans, A. M., Biere, N., Ebrahim, M. A., Li, S., Anselmetti, D., Dichtel, W. R., and Livingston, A. G., “Aligned macrocycle pores in ultrathin films for accurate molecular sieving,” Nature, Vol. 609, No. 7925, 2022, pp. 58-64.
  •  
  • 30. Alhazmi, B., Ignacz, G., Di Vincenzo, M., Hedhili, M. N., Szekely, G., and Nunes, S. P., “Ultraselective macrocycle membranes for pharmaceutical ingredients separation in organic solvents,” Nature Communications, Vol. 15, No. 1, 2024, 7151.
  •  
  • 31. Shinbo, T., Yamaguchi, T., Nishimura, K., and Sugiura, M., “Chromatographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings,” Journal of Chromatography A, Vol. 405, 1987, pp. 145-153.
  •  
  • 32. Mutihac, L., Mutihac, R., Constantinescu, T., and Luca, C., “The transport of amino acids by 18-crown-6 through liquid membranes,” Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, Vol. 17, 1994, pp. 45-51.
  •  
  • 33. Buschmann, H. J., Schollmeyer, E., and Mutihac, L., “Complexation of amino acid methylesters and amino alcohols by 18-Crown-6 and Benzo-18-crown-6 in methanol,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, Vol. 40, 2001, pp. 199-202.
  •  
  • 34. Badis, M., Tomaszkiewicz, I., Joly, J. P., and Rogalska, E., “Enantiomeric recognition of amino acids by amphiphilic crown ethers in Langmuir monolayers,” Langmuir, Vol. 20, No. 15, 2004, pp. 6259-6267.
  •  
  • 35. Kim, J. F., Kim, J. H., Lee, Y. M., and Drioli, E., “Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review,” AIChE Journal, Vol. 62, No. 2, 2016, pp. 461-490.
  •  
  • 36. Guillen, G. R., Pan, Y., Li, M., and Hoek, E. M., “Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review,” Industrial and Engineering Chemistry Research, Vol. 50, No. 7, 2011, pp. 3798-3817.
  •  
  • 37. Cui, Z., Pan, J., Wang, Z., Frappa, M., Drioli, E., and Macedonio, F., “Hyflon/PVDF membranes prepared by NIPS and TIPS: Comparison in MD performance,” Separation and Purification Technology, Vol. 247, 2020, 116992.
  •  
  • 38. Wienk, I. M., Boom, R. M., Beerlage, M. A. M., Bulte, A. M. W., Smolders, C. A., and Strathmann, H., “Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers,” Journal of Membrane Science, Vol. 113, No. 2, 1996, pp. 361-371.
  •  
  • 39. Wang, H., Zhao, S., Liu, Y., Yao, R., Wang, X., Cao, Y., Ma, D., Zou, M., Cao, A., Feng, X., and Wang, B., “Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations,” Nature Communications, Vol. 10, No. 1, 2019, 4204.
  •  
  • 40. Zhu, C., Zhang, X., Li, F., Yang, R., and Zhao, X., “Effects of Porogen PEG and Pore Structure of PVDF Substrates on the Permeability–Selectivity Trade-off of TFC-NF Membranes,” Industrial and Engineering Chemistry Research, Vol. 62, No. 21, 2023, pp. 8385-8395.
  •  
  • 41. Hou, Y., Shah, P., Constantoudis, V., Gogolides, E., Kappl, M., and Butt, H. J., “A super liquid-repellent hierarchical porous membrane for enhanced membrane distillation,” Nature Communications, Vol. 14, No. 1, 2023, 6886.
  •  
  • 42. Wang, W., Shi, Y., Zhang, C., Hong, S., Shi, L., Chang, J., Li, Y., Ong, C., Zhuo, S., and Wang, P., “Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation,” Nature Communications, Vol. 10, No. 1, 2019, 3012.
  •  
  • 43. Camacho, L. M., Dumée, L., Zhang, J., Li, J. D., Duke, M., Gomez, J., and Gray, S., “Advances in membrane distillation for water desalination and purification applications,” Water, Vol. 5, No. 1, 2013, pp. 94-196.
  •  
  • 44. Ashoor, B. B., Mansour, S., Giwa, A., Dufour, V., and Hasan, S. W., “Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review,” Desalination, Vol. 398, 2016, pp. 222-246.
  •  
  • 45. Guillen-Burrieza, E., Thomas, R., Mansoor, B., Johnson, D., Hilal, N., and Arafat, H., “Effect of dry-out on the fouling of PVDF and PTFE membranes under conditions simulating intermittent seawater membrane distillation (SWMD),” Journal of Membrane Science, Vol. 438, 2013, pp. 126-139.
  •  
  • 46. Liao, X., Goh, K., Liao, Y., Wang, R., and Razaqpur, A. G., “Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications,” Advances in Colloid and Interface Science, Vol. 297, 2021, 102547.
  •  
  • 47. Abu-Zeid, M. A. E. R., Zhang, Y., Dong, H., Zhang, L., Chen, H. L., and Hou, L., “A comprehensive review of vacuum membrane distillation technique,” Desalination, Vol. 356, 2015, pp. 1-14.
  •  
  • 48. Wu, X., Jiang, Q., Ghim, D., Singamaneni, S., and Jun, Y. S., “Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process,” Journal of Materials Chemistry A, Vol. 6, No. 39, 2018, pp. 18799-18807.
  •  
  • 49. Gao, M., Peh, C. K., Meng, F. L., and Ho, G. W., “Photothermal membrane distillation toward solar water production,” Small Methods, Vol. 5, No. 5, 2021, 2001200.
  •  
  • 50. Razaqpur, A. G., Wang, Y., Liao, X., Liao, Y., and Wang, R., "Progress of photothermal membrane distillation for decentralized desalination: A review,” Water Research, Vol. 201, 2021, 117299.
  •  
  • 51. Xu, Z., Zhang, L., Zhao, L., Li, B., Bhatia, B., Wang, C., Wilke, K. L., Song, Y., Labban, O., Lienhard, J. H., Wang, R., and Wang, E. N., “Ultrahigh-efficiency desalination via a thermally-localized multistage solar still,” Energy and Environmental Science, Vol. 13, No. 3, 2020, pp. 830-839.
  •  
  • 52. Zhang, B., Wong, P. W., Guo, J., Zhou, Y., Wang, Y., Sun, J., Jiang, M., Wang, Z., and An, A. K., “Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination,” Nature Communications, Vol. 13, No. 1, 2022, 3315.
  •  
  • 53. Farid, M. U., Kharraz, J. A., Sun, J., Boey, M. W., Riaz, M. A., Wong, P. W., Jia, M., Zhang, X., Deka, B. J., Khanzada, N. K., Guo, J., and An, A. K., “Advancements in nanoenabled membrane distillation for a sustainable water‐energy‐environment nexus,” Advanced Materials, Vol. 36, No. 17, 2024, 2307950.
  •  
  • 54. Subrahmanya, T. M., Austria, H. F. M., Chen, Y. Y., Setiawan, O., Widakdo, J., Kurkuri, M. D., Hung, W., Hu, C., Lee, K., and Lai, J. Y., “Self-surface heating membrane distillation for sustainable production of freshwater: A state of the art overview,” Progress in Materials Science, 2024, 101309.
  •  

This Article

Correspondence to

  • Chiyoung Park
  • Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology

  • E-mail: parkcy@dgist.ac.kr