Special Issue
  • Research Trends on Key Components of Proton Exchange Membrane Fuel Cells (PEMFC): A Review
  • Seung-Cheol Shin*# , Myungjin Hong*# , Eun Ju Jeong*, Seong Jun Kim*, Seung Woo Choi*, Hyun Tak Kim*, Tak Heo*, Min Jeong Kim*, Young Kyu Kim*, Sang Eui Lee*†

  • * Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Hong, S.A., “Development Trends and Future Outlook of Hydrogen and Fuel Cell Technologies”, Ingenium, Vol. 13, 2006, No. 3, pp. 53-61.
  •  
  • 2. Lee, S.W., “Replace depleting fossil fuels with inexhaustible solar energy”, Journal of Electrical World, No. 286, 2000, pp. 53-61.
  •  
  • 3. IEA (2020), World Energy Outlook 2020, IEA, Paris, https://www.iea.org/reports/world-energy-outlook-2020
  •  
  • 4. Park, J.W., Kajiuchi, T., Shindo, Y., Lee, S.M., “Global Warming Caused by Carbon Dioxide and Research Trends in Mitigation Technologies”, Chemical Industry and Technology, Vol. 11, 1993, No. 4, pp. 218-224.
  •  
  • 5. Kim, J.W., “Prospects for Hydrogen Energy and International Cooperation”, NICE(News & Information for Chemical Engineers), Vol. 22, 2004, No. 2, pp. 112-117.
  •  
  • 6. MOTIE (2019), Hydrogen Economy Revitalization Roadmap 2019, MOTIE, Sejong, https://www.motie.go.kr/kor/article/ATCLf724eb567/210222/view#
  •  
  • 7. Kim, H.K. (2021), Overview and Current Status of fuel cell, K-newdeal industry insight report 2021, Export-Import Bank of Korea, Department of Industrial and Economic Research, Seoul, https://www.ctis.re.kr/ko/downloadBbsFile.do?atchmnflNo=6882
  •  
  • 8. Jang, J.Y., Eom, Y.S., Lim, D.B. (2019), The Present and Future of Fuel Cells, Samjong KPMG Issue monitor 2019, Samjong KPMG, Seoul, https://assets.kpmg.com/content/dam/kpmg/kr/pdf/2019/kr_issuemonitor-112-20190802.pdf
  •  
  • 9. İnci, M., Türksoy, Ö., “Review of fuel cells to grid interface: Configurations, technical challenges and trends”, Journal of Cleaner Production, Vol. 213, 2019, pp. 1353-1370
  •  
  • 10. A. Kirubakaran, Shailendra Jain, R.K. Nema, “A review on fuel cell technologies and power electronic interface”, Renewable and Sustainable Energy Reviews, Vol. 13, 2009, No. 9, pp. 2430-2440.
  •  
  • 11. K. Song, Y. Wang, Y. Ding, H. Xu, P. Mueller-Welt, T.Stuermlinger, K. Bause, C. Ehrmann, H. W. Weinmann, . Schaefer, J. Fleischer, K. Zhu, F. Weihard, M. Trostmann, M. Schwartze, A. Albers, “Assembly techniques for proton exchange membrane fuel cell stack: A literature review”, Renewable and Sustainable Energy Reviews, Vol. 153, 2022, 111777.
  •  
  • 12. S. Khosravi, Q. Abbas, K. Reichmann, “Electrochemical aspects of interconnect materials in PEMFCs”, International Journal of Hydrogen Energy, Vol. 46, 2021, No. 71, pp. 35420-35447.
  •  
  • 13. Yu, S.J., Hwang, S.J., Kim, S.K., “Trends in Electrode Catalyst Development for Proton Exchange Membrane Fuel Cells”, NICE(News & Information for Chemical Engineers), Vol. 30, 2012, No. 4, pp. 422-425.
  •  
  • 14. Kim, D.J., Cho, E.A., Hong, S.A., Oh, I.H., “Recent progress in passive direct methanol fuel cells at KIST”, Journal of Power Sources, Vol. 130, 2004, Issues 1-2, pp. 172-177.
  •  
  • 15. Sim, J.P., “Recent Trends in Polymer Electrolyte Membrane Fuel Cell (PEMFC & DMFC) Technology Development” Journal of the Institute of Electronics and Information Engineers, Vol. 14, 2011, No. 1, pp. 17-23.
  •  
  • 16. X. Cheng, C. Peng, M. You, L. Liu, Y. Zhang, Q. Fan, “Characterization of catalysts and membrane in DMFC lifetime testing”, Electrochimica Acta, Vol. 51, 2006, Issues 22, pp. 4620-4625.
  •  
  • 17. A. S. Aricò, P. Cretı, V. Baglio, E. Modica, V. Antonucci, “Influence of flow field design on the performance of a direct methanol fuel cell”, Journal of Power Sources, Vol. 91, 2000, Issue 2, pp. 202-209.
  •  
  • 18. Yong, Y.W., Azam, A.M.I.N, Masdar, M.S., Zainoodin, A.M., Kamarudin, S.K., “Anode structure with double-catalyst layers for improving the direct ethanol fuel cell performance”, International Journal of Hydrogen Energy, Vol. 45, 2020, Issue 42, pp. 22302-22314.
  •  
  • 19. M. A. Dresch, B. R. Matos, D. R. M. Godoi, M. Linardi, F. C. Fonseca, H. de las Mercedes Villullas, E. I. Santiago, “Advancing direct ethanol fuel cell operation at intermediate temperature by combining Nafion-hybrid electrolyte and well-alloyed PtSn/C electrocatalyst”, International Journal of Hydrogen Energy, Vol. 46, 2021, Issue 24, pp. 13252-13264.
  •  
  • 20. Sinha, V., Mondal, S., “Recent development on performance modelling and fault diagnosis of fuel cell systems”, International Journal of Dynamics and Control, Vol. 6, 2018, pp. 511-528.
  •  
  • 21. O’Hayre, R., Cha, S.W., Colella, W., Prinz, F.B., Fuel cell fundamentals, Wiley, Hoboken, NJ, 2016, pp. 315-317.
  •  
  • 22. N. Sammes, R. Bove, K. Stahl, “Phosphoric acid fuel cells: Fundamentals and applications”, Current Opinion in Solid State and Materials Science, Vol. 8, 2004, Issue 5, pp. 372-378.
  •  
  • 23. J. Brouwer, F. Jabbari, E. M. Leal, T. Orr, “Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation”, Journal of Power Sources, Vol. 158, 2006, Issue. 1, pp. 213-224.
  •  
  • 24. Choe, Y.J., Jeon, J.H., Jeon, J.H., “Molten Carbonate Fuel Cell (MCFC) system”, Magazine of the KIPE (The Korean Institute of Power Electronics), Vol. 12, 2007, Issue. 4, pp. 29-33.
  •  
  • 25. Oh, J.K., Baek, S.H., “Fuel Cell Technology Trends”, KIEE (The Korean Institute of Power Electronics) magazine, Vol. 55, No. 5, 2006, pp. 22-25.
  •  
  • 26. G. Merle, M. Wessling, K. Nijmeijer, “Anion exchange membranes for alkaline fuel cells: A review”, Journal of Membrane Science, Vol. 377, Issues 1-2, 2011, pp. 1-35.
  •  
  • 27. Y. Wang, D. Y.C. Leung, J. Xuan, H. Wang, “A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell”, Renewable and Sustainable Energy Reviews, Vol. 75, 2017, pp. 775-795.
  •  
  • 28. Yoon, K.S., Yoo, J.H., “Technology Development and Research Trends of Solid Oxide Fuel Cells (SOFCs)”, Electrical & Electronic materials, Vol. 33, 2020, pp. 18-27.
  •  
  • 29. Lee, S.M. (2021), [KISTEP Technology Trend Brief] Fuel Cells 2021-06, KISTEP, Chungcheongbuk-do, https://www.kistep.re.kr/ ease_src/synap/skin/doc.html?imageConverting=true&key= 202105121816251471.pdf&contextPath=/synap/attachFiles/board/0031/202105121816251471.pdf
  •  
  • 30. Cheongwadae (2020), The Republic of Korea's Carbon Neutrality Declaration 2020, Cheongwadae, Seoul, https://www.mofa. go.kr/www/brd/m_20152/view.do?seq=367872&srchFr=& ;srchTo=&srchWord=&srchTp=&multi_itm_seq=0&itm_seq_1=0&itm_seq_2=0&company_cd=&company_nm=
  •  
  • 31. Kim, S.H. (2021), Current Status and Challenges of Hydrogen Power Generation (Fuel Cells) in Korea 2021, KDB Future Strategy Research Institute, Seoul, https://eiec.kdi.re.kr/policy/domesticView.do?ac=0000157563
  •  
  • 32. Bis Research (2016), Global Fuel Cells Market - A Global Study (2016 - 2022) (Focus on Technology Type, Application and Regional Market Dynamics), Bis Research, Fremont, CA, https://bisresearch.com/industry-report/global-fuel-cells-vehicles-market-report-forecast.html
  •  
  • 33. Hyundai Motor Company (2021), Hyundai Motor company’s Roadmap for Carbon Neutrality. Hyundai Motor Company, Seoul, https://www.hyundai.com/worldwide/ko/brand-journal/sustainable-vision/iaa2021-carbon-neutrality
  •  
  • 34. Park, J.Y., Kim, J.I., Koo, Y.M. (2020), Strategic Plans to Introduce Fuel Cell Electric Vehicle Cosidering Marketability and Eco-friendly Car Industry 2020, KOTI, Sejong, https://www.koti.re.kr/user/bbs/bassRsrchReprtView.do?bbs_no=670
  •  
  • 35. Shin, J.Y. (2020), Enterprise analytics reports (Envioneer), KODATA, Seoul, https://kirs.or.kr/research/tech2020_1.html?mode =search&area=code&keyword=317870
  •  
  • 36. Lee, S.H., Kim, T.H. (2020), “The True Era of Hydrogen: Expanding the Boundaries of the Hydrogen Industry Amid Constraints”, IBK Securities Co. Ltd., Research Division, Seoul, https://m.ibks.com/iko/IKO010301.do?seq=8051
  •  
  • 37. TechNavio (2016), Global Fuel Cell Market in the Automotive Industry 2015-2019, TechNavio, London, https://www. technavio.com/report/global-automotive-manufacturing-fuel-cell-market-automotive-market
  •  
  • 38. Innopolis (2020), Global Fuel Cell Market 2020, Innopolis, Daejeon, https://www.innopolis.or.kr/board/view?pageNum= 34&rowCnt=10&no1=636&linkId=44495&menuId=MENU00999&schType=0&schText=&categoryId=05&continent=
  •  
  • 39. Yoon, S.P., “An Overview of the Current State and Future Prospects of the Fuel Cell Market”, NICE (News & Information for Chemical Engineers), Vol. 29, 2011, Issue. 4
  •  
  • 40. Park, J.Y., Trends in Global Environmental Policy 2021-02, KEI, Sejong, https://www.kei.re.kr/board.es?mid=a10102060000 &bid=0032&act=view&list_no=57566
  •  
  • 41. Shin, M.S., Kim, D.E., Park, J.S., “Preparation and Characterizations of poly(arylene ether sulfone)/SiO2 Composite Membranes for Polymer Electrolyte Fuel Cell”, Membrane Journal, Vol. 27, 2017, Issue. 2, pp. 182-188.
  •  
  • 42. Ahn, J.H., Lee, C.H., “Preparation and Characterization of Sulfonated Poly(Arylene Ether Sulfone) Random Copolymer Reinforced Membranes for Fuel Cells,” Membrane Journal, Vol. 26, 2016, Issue. 2, pp. 146-151.
  •  
  • 43. Hwang, J.P., Lee, C.H., “Research Trends and Prospects of Reverse Electrodialysis Membranes”, Membrane Journal, Vol. 27, Issue. 2, 2017, pp. 109-120.
  •  
  • 44. X. Shangguan, Y. Li, Y. Qin, S. Cao, J. Zhang, Y. Yin, “Effect of the porosity distribution on the liquid water transport in the gas diffusion layer of PEMFC”, Electrochimica Acta, Vol. 371, 2021, 137814.
  •  
  • 45. Park, J.E., Lim, J.K., Lim, M.S., Kim, S.J., Kim, O.H., Lee, D.W., Lee, J.H., Cho, Y.H., Sung, Y.E., “Gas diffusion layer/flow-field unified membrane-electrode assembly in fuel cell using graphene foam”, Electrochimica Acta, Vol. 323, 2019, 134808.
  •  
  • 46. T. Chen, S. Liu, J. Zhang, M. Tang, “Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC”, International Journal of Heat and Mass Transfer, Vol. 128, 2019, pp. 1168-1174.
  •  
  • 47. Yarar Kaplan, B., Işıkel Şanlı, L., and Alkan Gürsel, S., “Flexible carbon-cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells”, Journal of Materials Science, Vol. 52, 2017, pp. 4968-4976.
  •  
  • 48. W.-H. Chen, T.-H. Ko, J.-H. Lin, C.-H. Liu, C.-W. Shen, C.-H. Wang, “Influences of Gas Diffusion Layers with Pitch-based Carbon Coated in Polymer Electrolyte Membrane Fuel Cell”, International Journal of Electrochemical Science, Vol. 6, 2011, Issue. 6, pp. 2192-2200.
  •  
  • 49. R. Taherian, M. M. Ghorbani, M. Nasr, S. R. Kiahosseini, “Fabrication and investigation of polymer-based carbon composite as gas diffusion layer of proton exchange membrane of fuel cells”, Materials Science: Advanced Composite Materials, Vol. 2, 2018, Issue. 1, pp. 1-12.
  •  
  • 50. J.-H. Lin, W.-H. Chen, S.-H. Su, Y.-K. Liao, T.-H. Ko, “Carbon film coating on gas diffusion layer for proton exchange membrane fuel cells”, Journal of Power Sources, Vol. 184, 2008, Issue. 1, pp. 38-43.
  •  
  • 51. T. Hottinen, M. Mikkola, T. Mennola, P. Lund, “Titanium sinter as gas diffusion backing in PEMFC”, Journal of Power Sources, Vol. 118, 2003, Issues. 1-2, pp. 183-188.
  •  
  • 52. S. Yu, J. Hao, J. Li, L. Zhang, “Effect of distribution of polytetrafluoroethylene on durability of gas diffusion backing in proton exchange membrane fuel cell”, Materials Research Bulletin, Vol. 122, 2020, 110684.
  •  
  • 53. H. Ito, T. Iwamura, S. Someya, T. Munakata, A. Nakano, Yun Heo, M.Ishida, H. Nakajima, T. Kitahara, “Effect of through-plane polytetrafluoroethylene distribution in gas diffusion layers on performance of proton exchange membrane fuel cells”, Journal of Power Sources, Vol. 306, 2016, pp. 289-299.
  •  
  • 54. Kim, H.U., Lee, Y.J., Park, G.G., Park, S.H., Choi, Y.Y., Yoo, Y.J., “Fabrication of carbon paper containing PEDOT:PSS for use as a gas diffusion layer in proton exchange membrane fuel cells”, Carbon, Vol. 85, 2015, pp. 422-428.
  •  
  • 55. A. Ozden, S. Shahgaldi, X. Li, F. Hamdullahpur, “A graphene-based microporous layer for proton exchange membrane fuel cells: Characterization and performance comparison”, Renewable Energy, Vol. 126, 2018, pp. 485-494.
  •  
  • 56. A. Ozden, S. Shahgaldi, J. Zhao, X. Li, F. Hamdullahpur, “Assessment of graphene as an alternative microporous layer material for proton exchange membrane fuel cells”, Fuel, Vol. 215, 2018, pp. 726-734.
  •  
  • 57. Kim, J.Y., Kim, H.O., Song, H.J., Kim, D.S., Kim, G.H., Im, D.S., Jeong, Y.J., Park, T.H., “Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells”, Energy, Vol. 227, 2021, 120459.
  •  
  • 58. M. Fontana, R. Ramos, A. Morin, J. Dijon, “Direct growth of carbon nanotubes forests on carbon fibers to replace microporous layers in proton exchange membrane fuel cells”, Carbon, Vol. 172, 2021, pp. 762-771.
  •  
  • 59. B. Laoun, H. A. Kasat, R. Ahmad, A. M. Kannan, “Gas diffusion layer development using design of experiments for the optimization of a proton exchange membrane fuel cell performance”, Energy, Vol. 151, 2018, pp. 689-695.
  •  
  • 60. F. Hendricks, J. Chamier, S. Tanaka, “Membrane electrode assembly performance of a standalone microporous layer on a metallic gas diffusion layer”, Journal of Power Sources, Vol. 464, 2020, 228222.
  •  
  • 61. Y. Wang, T. Liu, W. He, S. Wang, S. Liu, L. Yue, H. Li, “Performance enhancement of polymer electrolyte membrane fuel cells with a hybrid wettability gas diffusion layer”, Energy Conversion and Management, Vol. 223, 2020, 113297.
  •  
  • 62. Lim, I.S., Kang, B.H., Park, J.Y., Kim, M.S., “Performance improvement of polymer electrolyte membrane fuel cell by gas diffusion layer with atomic-layer-deposited HfO2 on microporous layer”, Energy Conversion and Management, Vol. 236, 2021, 114070.
  •  
  • 63. A.K.C. Wong, N. Ge, P. Shrestha, H. Liu, K. Fahy, A. Bazylak, “Polytetrafluoroethylene content in standalone microporous layers: Tradeoff between membrane hydration and mass transport losses in polymer electrolyte membrane fuel cells”, Applied Energy, Vol. 240, 2019, pp. 549-560.
  •  
  • 64. Choi, J.W., Lee, S.H., Shim, B.S., Yi, J.S., Kim, D.H., Park, S.K., “Unveiling water drainage through microporous layer with laser-ablated open furrows in proton exchange membrane fuel cells”, Journal of Power Sources, Vol. 491, 2021, 229563.
  •  
  • 65. T. Kitahara, H. Nakajima, M. Inamoto, M. Morishita, “Novel hydrophilic and hydrophobic double microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells under both low and high humidity”, Journal of Power Sources, Vol. 234, 2013, pp. 129-138.
  •  
  • 66. Balzarotti R., Latorrata S., Stampino P.G., Cristiani C., Dotelli G., “Development and Characterization of Non-Conventional Micro-Porous Layers for PEM Fuel Cells”, Energies, Vol. 8, 2015, pp. 7070-7083.
  •  
  • 67. H. Ito, Y. Heo, M. Ishida, A. Nakano, S. Someya, T. Munakata, “Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells”, Journal of Power Sources, Vol. 342, 2017, pp. 393-404.
  •  
  • 68. G. Lin, S. Liu, S. Qu, T. Li, Z. Liang, Y. Hu, F. Liu, “Effects of thickness and hydrophobicity of double microporous layer on the performance in proton exchange membrane fuel cells”, Journal of Applied Polymer Science, Vol. 138, 2021, Issue. 18, 50355.
  •  
  • 69. Wang, G., Utaka, Y., Wang, S., “Effect of Dual Porous Layers with Patterned Wettability on Low-Temperature Start Performance of Polymer Electrolyte Membrane Fuel Cell”, Energies, Vol. 13, 2020, Issue. 14, 3529.
  •  
  • 70. G. Athanasaki, Q. Wang, X. Shi, N. Chauhan, V. Vimala, L. Cindrella, R. Ahmad, A.M. Kannan, “Design and development of gas diffusion layers with pore forming agent for proton exchange membrane fuel cells at various relative humidity conditions”, International Journal of Hydrogen Energy, Vol. 46, 2021, Issue. 9, pp. 6835-6844.
  •  
  • 71. Park, S.B., Kim, S.J., Park, Y.I., Oh, M.H., “Fabrication of GDL microporous layer using PVDF for PEMFCs”, Journal of Physics: Conference Series, Vol. 165, 2009, 012046.
  •  
  • 72. K. Zhou, T. Li, Y. Han, J. Wang, J. Chen, K. Wang, “Optimizing the hydrophobicity of GDL to improve the fuel cell performance”, RSC Advances, Vol. 11, 2021, pp. 2010-2019.
  •  
  • 73. Z. Xie, G. Chen, X. Yu, M. Hou, Z. Shao, S. Hong, C. Mu, “Carbon nanotubes grown in situ on carbon paper as a microporous layer for proton exchange membrane fuel cells”, International Journal of Hydrogen Energy, Vol. 40, 2015, Issue. 29, pp. 8958-8965.
  •  
  • 74. Chun, J.H., Park, K.T., Jo, D.H., Lee, J.Y., Kim, S.G., Park, S.H., Lee, E.S., Jyoung, J.Y., Kim, S.H., “Development of a novel hydrophobic/hydrophilic double micro porous layer for use in a cathode gas diffusion layer in PEMFC”. International Journal of Hydrogen Energy, Vol. 36, 2011, Issue. 14, pp. 8422-8428.
  •  
  • 75. S.-Y. Lin, M.-H. Chang, “Effect of microporous layer composed of carbon nanotube and acetylene black on polymer electrolyte membrane fuel cell performance”, International Journal of Hydrogen Energy, Vol. 40, 2015, Issue. 24, pp. 7879-7885.
  •  
  • 76. J. Shan, R. Lin, X. Chen, X. Diao, “EIS and local resolved current density distribution analysis on effects of MPL on PEMFC performance at varied humidification”, International Journal of Heat and Mass Transfer, Vol. 127, 2018, Part. C, pp. 1076-1083.
  •  
  • 77. R. Lin, D. Zhong, S. Lan, R. Guo, Y. Ma, X. Cai, “Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer”, Applied Energy, Vol. 300, 2021, 117306.
  •  
  • 78. J. Lee, H. Liu, M.G. George, R. Banerjee, N. Ge, S. Chevalier, T. Kotaka, Y. Tabuchi, A. Bazylak, “Microporous layer to carbon fibre substrate interface impact on polymer electrolyte membrane fuel cell performance”, Journal of Power Sources, Vol. 422, 2019, pp. 113-121.
  •  
  • 79. T. Li, K. Wang, J. Wang, Y. Liu, Y. Han, Z. Xu, G. Lin, Yong Liu, “Optimization of GDL to improve water transferability”, Renewable Energy, Vol. 179, 2021, pp. 2086-2093.
  •  
  • 80. G. Velayutham, “Effect of micro-layer PTFE on the performance of PEM fuel cell electrodes”, International Journal of Hydrogen Energy, Vol. 36, 2011, Issue. 22, pp. 14845-14850.
  •  
  • 81. Sim, J.B., Kang, M.S., Min, K.D., “Effects of basic gas diffusion layer components on PEMFC performance with capillary pressure gradient”, International Journal of Hydrogen Energy, Vol. 46, 2021, Issue. 54, pp. 27731-27748.
  •  
  • 82. J. T. Gostick, M. A. Ioannidis, M. W. Fowler, M. D. Pritzker, “On the role of the microporous layer in PEMFC operation”, Electrochemistry Communications, Vol. 11, 2009, Issue. 3, pp. 576-579.
  •  
  • 83. J. Lee, R. Banerjee, M. G. George, D. Muirhead, P. Shrestha, H. Liu, N. Ge, S. Chevalier, A. Bazylak, “Multiwall Carbon Nanotube-Based Microporous Layers for Polymer Electrolyte Membrane Fuel Cells”, Journal of The Electrochemical Society, Vol. 164, 2017, No. 12, pp. 1149-1157.
  •  
  • 84. H. Zamora, P. Cañizares, M. A. Rodrigo, J. Lobato, “Improving of Micro Porous Layer based on Advanced Carbon Materials for High Temperature Proton Exchange Membrane Fuel Cell Electrodes”, Fuel Cells, Vol. 15, 2015, Issue. 2, pp. 375-383.
  •  
  • 85. Y. Jiang, J. Hao, M. Hou, H. Zhang, X. Li, Z. Shao, Baolian Yi, “A new microporous layer material to improve the performance and durability of polymer electrolyte membrane fuel cells”, RSC Advances, Vol.5, 2015, pp. 104095-104100.
  •  
  • 86. Park, S.B., Park, Y.I., “Fabrication of gas diffusion layer (GDL) containing microporous layer using flourinated ethylene prophylene (FEP) for proton exchange membrane fuel cell (PEMFC)”, International Journal of Precision Engineering and Manufacturing, Vol. 13, 2012, pp. 1145-1151.
  •  
  • 87. M. J. Leeuwner, A. Patra, D. P. Wilkinson, E. L. Gyenge, “Graphene and reduced graphene oxide based microporous layers for high-performance proton-exchange membrane fuel cells under varied humidity operation”, Journal of Power Sources, Vol. 423, 2019, pp. 192-202.
  •  
  • 88. T. Kitahara, H. Nakajima, K. Okamura, “Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions”, Journal of Power Sources, Vol. 283, 2015, pp. 115-124.
  •  
  • 89. G.-B. Jung, W.-J. Tzeng, T.-C. Jao, Y.-H. Liu, C.-C. Yeh, “Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells”, Applied Energy, Vol. 101, 2013, pp. 457-464.
  •  
  • 90. A. Tiliakos, A.M.I. Trefilov, E.Tanasă, A. Balan, I. Stamatin, “Laser-induced graphene as the microporous layer in proton exchange membrane fuel cells”, Applied Surface Science, Vol. 504, 2020, 144096.
  •  
  • 91. G. Selvarani, A. K. Sahu, P. Sridhar, S. Pitchumani, A. K. Shukla, “Effect of diffusion-layer porosity on the performance of polymer electrolyte fuel cells”, Journal of Applied Electrochemistry, Vol. 38, 2008, pp. 357-362.
  •  
  • 92. J. Yu, Y. Yoshikawa, T. Matsuura, M. N. Islam, M. Hori, “Preparing Gas-Diffusion Layers of PEMFCs with a Dry Deposition Technique”, Electrochemical and Solid-State Letters, Vol. 8, 2005, Issue. 3, pp. A152-A155.
  •  
  • 93. F. Guo, X. Yang, H. Jiang, Y. Zhu, C. Li, “An ultrasonic atomization spray strategy for constructing hydrophobic and hydrophilic synergistic surfaces as gas diffusion layers for proton exchange membrane fuel cells”, Journal of Power Sources, Vol. 451, 2020, 227784.
  •  
  • 94. D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, “Stainless steel as a bipolar plate material for solid polymer fuel cells”, Journal of Power Sources, Vol. 86, 2000, Issues 1-2, pp. 237-242.
  •  
  • 95. Lee, J.Y., Lee, W.K., Rim, H.R., Joung. G.B., Lee, H.K., “Effect of Carbon Fiber Filament and Graphite Fiber on the Mechanical Properties and Electrical Conductivity of Elastic Carbon Composite Bipolar Plate for PEMFC”, Journal of Hydrogen and New energy, Vol. 25, 2014, No. 2, pp. 131-138.
  •  
  • 96. Lee, H.K., Han, K.S., “Effect of Surface-Modified Carbon Fiber on the Mechanical Properties of Carbon/Epoxy Composite for Bipolar Plate of PEMFC”, Journal of Hydrogen and New energy, Vol. 31, 2020, No. 1, pp. 49-56.
  •  
  • 97. Choi, H.U., Seo, D.J., Choi, W.Y., Choi, S.W., Lee, M.H., Park, Y.J., Kim, T.Y., Yoon, Y.G., Yi, S.C., Jung, C.Y., “An ultralight-weight polymer electrolyte fuel cell based on woven carbon fiber-resin reinforced bipolar plate”, Journal of Power Sources, Vol. 484, 2021, 229291.
  •  
  • 98. Y.-D. Kuan, C.-W. Ciou, M.-Y. Shen, C.-K. Wang, R. Z. Fitriani, C.-Y. Lee, “Bipolar plate design and fabrication using graphite reinforced composite laminate for proton exchange membrane fuel cells”, International Journal of Hydrogen Energy, Vol. 46, 2021, Issue. 31, pp. 16801-16814.
  •  
  • 99. Lim, J.W., “Development of Carbon Composite Bipolar Plates for PEMFC”, Composites Research, Vol. 32, 2019, No. 5, pp. 222-228.
  •  
  • 100. Thangarasu, S., Jung, H.Y., Wee, J.H., Kim, Y.A., Roh, S.H., “A new strategy of carbon - Pb composite as a bipolar plate material for unitized regenerative fuel cell system”, Electrochimica Acta, Vol. 391, 2021, 138921.
  •  
  • 101. B. Lv, Z. Shao, L. He, Y. Gou, S. Sun, “A novel graphite/phenolic resin bipolar plate modified by doping carbon fibers for the application of proton exchange membrane fuel cells”, Progress in Natural Science: Materials International, Vol. 30, 2020, Issue. 6, pp. 876-881.
  •  
  • 102. C. Wang, Q. Zhang, S. Shen, X. Yan, F. Zhu, X. Cheng, J. Zhang, “The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells”, Scientific Reports, Vol. 7, 2017, 43447.
  •  
  • 103. X.-Z. Wang, T. P. Muneshwar, H.-Q. Fan, K. Cadien, J.-L. Luo, “Achieving ultrahigh corrosion resistance and conductive zirconium oxynitride coating on metal bipolar plates by plasma enhanced atomic layer deposition”, Journal of Power Sources, Vol. 397, 2018, pp. 32-36.
  •  
  • 104. J. Shi, P. Zhang, Y. Han, H. Wang, X. Wang, Y. Yu, J. Sun, “Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC”, International Journal of Hydrogen Energy, Vol. 45, 2020, Issue. 16, pp. 10050-10058.
  •  
  • 105. M.A. Deyab, G. Mele, “Stainless steel bipolar plate coated with polyaniline/Zn-Porphyrin composites coatings for proton exchange membrane fuel cell”, Scientific Reports, Vol. 10, 2020, 3277.
  •  
  • 106. P. Zhang, C. Hao, Y. Han, F. Du, H. Wang, X. Wang, J. Sun, “Electrochemical behavior and surface conductivity of NbC modified Ti bipolar plate for proton exchange membrane fuel cell”, Surface and Coatings Technology, Vol. 397, 2020, 126064.
  •  
  • 107. M. Soleimani Alavijeh, H. Kefayati, A. N. Golikand, S. Shariati, “Synthesis and characterization of epoxy/graphite/nano-copper nanocomposite for the fabrication of bipolar plate for PEMFCs”, Journal of Nanostructure in Chemistry, Vol. 9, 2019, pp. 11-18.
  •  
  • 108. S. Witpathomwong, M. Okhawilai, C. Jubsilp, P. Karagiannidis, S. Rimdusit, “Highly filled graphite/graphene/carbon nanotube in polybenzoxazine composites for bipolar plate in PEMFC”, International Journal of Hydrogen Energy, Vol. 45, 2020, Issue. 55, pp. 30898-30910.
  •  
  • 109. A.G. González-Gutiérrez, M.A. Pech-Canul, G. Chan-Rosado, P.J. Sebastian, “Studies on the physical and electrochemical properties of Ni-P coating on commercial aluminum as bipolar plate in PEMFC”, Fuel, Vol. 235, 2019, pp. 1361-1367.
  •  
  • 110. U. K. Chanda, A. Behera, S. Roy, S. Pati, “Evaluation of Ni-Cr-P coatings electrodeposited on low carbon steel bipolar plates for polymer electrolyte membrane fuel cell”, International Journal of Hydrogen Energy, Vol. 43, 2018, Issue. 52, pp. 23430-23440.
  •  
  • 111. Baik, K.D., Seo, I.S., “Metallic bipolar plate with a multi-hole structure in the rib regions for polymer electrolyte membrane fuel cells”, Applied Energy, Vol. 212, 2018, pp. 333-339.
  •  
  • 112. E. E. Kahveci, I. Taymaz, “Experimental study on performance evaluation of PEM fuel cell by coating bipolar plate with materials having different contact angle”, Fuel, Vol. 253, 2019, pp. 1274-1281.
  •  
  • 113. T. Li, Z. Yan, Z. Liu, Y. Yan, Y. Chen, “Surface microstructure and performance of TiN monolayer film on titanium bipolar plate for PEMFC”, International Journal of Hydrogen Energy, Vol. 46, 2021, Issue. 61, pp. 31382-31390.
  •  
  • 114. Z. Wang, Y. Zeng, S. Sun, Z. Shao, B. Yi, “Improvement of PEMFC water management by employing water transport plate as bipolar plate”, International Journal of Hydrogen Energy, Vol. 42, 2017, Issue. 34, pp. 21922-21929.
  •  
  • 115. J. Che, P. Yi, L. Peng, X. Lai, “Impact of pressure on carbon films by PECVD toward high deposition rates and high stability as metallic bipolar plate for PEMFCs”, International Journal of Hydrogen Energy, Vol. 45, 2020, Issue. 32, pp. 16277-16286.
  •  
  • 116. H. Dong, S. He, X. Wang, C. Zhang, D. Sun, “Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC”, Diamond and Related Materials, Vol. 110, 2020, 108156.
  •  
  • 117. Jeong, J.H., Song, M.H., Chung H.B., Na, I.C., Lee, J.H., Lee, H., Park, K.P., “Performance and Durability of PEMFC MEAs Fabricated by Various Methods”, Korean Chemical Engineering Research, Vol. 52, 2014, Issue. 5, pp. 558-563.
  •  
  • 118. N. K. Shrivastava, A. Chatterjee, T. A.L. Harris, “Effect of cell compression on the performance of a non-hot-pressed MEA for PEMFC”, International Journal of Energy Research, Vol. 44, 2019, pp. 370-387.
  •  
  • 119. M. Wang, H. Guo, C. Ma, “Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed”, Journal of Power Sources, Vol. 157, 2006, Issue. 1, pp. 181-187.
  •  
  • 120. Jang, H.S., Cho, E.A., “Effects of Additives and Hot-Pressing Conditions on the Surface and Performance of MEAs for PEMFCs”, Journal of the Korean Hydrogen and New Energy Society, Vol. 21, No. 5, 2010, pp. 398-404.
  •  
  • 121. Jeon, S.Y., Lee, J.S., Gema M. Rios, Kim, H.J., Lee, S.Y., Cho, E.A., Lim, T.H., Jang, J.H., “Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method”, International Journal of Hydrogen Energy, Vol. 35, 2010, Issue. 18, pp. 9678-9686.
  •  
  • 122. H. Guo, M. H. Wang, F. Ye, C. F. Ma, “Experimental study of temperature distribution on anodic surface of MEA inside a PEMFC with parallel channels flow bed”, International Journal of Hydrogen Energy, Vol. 37, 2012, Issue. 17, pp. 13155-13160.
  •  
  • 123. A. Ostroverkh, M. Dubau, V. Johánek, M. Václavů, B. Šmíd, K. Veltruská, Y. Ostroverkh, R. Fiala, V. Matolín, “Efficient Pt-C MEA for PEMFC with Low Platinum Content Prepared by Magnetron Sputtering”, Fuel Cells, Vol. 18, 2018, No. 1, pp. 51-56.
  •  
  • 124. V. Yarlagadda, S. E. McKinney, C. L. Keary, L. Thompson, B. Zulevi and A. Kongkanand, “Preparation of PEMFC Electrodes from Milligram-Amounts of Catalyst Powder”, Journal of The Electrochemical Society, Vol. 164, 2017, Issue. 7, pp. F845-F849.
  •  
  • 125. D. Rohendi, E.H. Majlan, A.B. Mohamad, W.R.W. Daud, A.A.H. Kadhum, L.K. Shyuan, “Effects of temperature and backpressure on the performance degradation of MEA in PEMFC”, International Journal of Hydrogen Energy, Vol. 40, 2015, Issue. 34, pp. 10960-10968.
  •  
  • 126. S. Mohanty, A. N. Desai, S. Singh, Venkatasailanathan Ramadesigan, Shaneeth M, “Effects of the membrane thickness and ionomer volume fraction on the performance of PEMFC with U-shaped serpentine channel”, International Journal of Hydrogen Energy, Vol. 46, 2021, Issue. 39, pp. 20650-20663.
  •  
  • 127. S. Cuynet, A. Caillard, J. Bigarré, P. Buvat, “Impact of the patterned membrane morphology on PEMFC performances of ultra-low platinum loaded MEAs”, International Journal of Hydrogen Energy, Vol. 42, 2017, Issue. 12, pp. 7974-7985.
  •  
  • 128. A. R. Kim, C. J. Park, M. Vinothkannan, D. J. Yoo, “Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells”, Composites Part B: Engineering, Vol. 155, 2018, pp. 272-281.
  •  
  • 129. Y.-J. Kuo, H.-L. Lin, “Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for high-temperature polymer fuel cells”, International Journal of Hydrogen Energy, Vol. 43, 2018, Issue. 9, pp. 4448-4457.
  •  
  • 130. T. Roy, S. K. Wanchoo, K. Pal, “Synergetic proton-conducting effect of sulfonated PEEK-MO2-CNT membranes for PEMFC applications”, Ionics, Vol. 27, 2021, pp. 4859-4873.
  •  
  • 131. R. P. Dowd Jr., Y. Li, T. V. Nguyen, “Controlling the ionic polymer/gas interface property of a PEM fuel cell catalyst layer during membrane electrode assembly fabrication”, Journal of Applied Electrochemistry, Vol. 50, 2020, pp. 993-1006.
  •  
  • 132. Kim, D.H., Jung, H.S., Chun, H.S., Pak, C.H., “Enhanced membrane electrode assembly performance by adding PTFE/Carbon black for high temperature polymer electrolyte membrane fuel cell”, International Journal of Hydrogen Energy, Vol. 46, 2021, Issue. 57, pp. 29424-29431.
  •  
  • 133. F. Mahdi, L. Naji, A. Rahmanian, “Fabrication of membrane electrode assembly based on nafion/sulfonated graphene oxide nanocomposite by electroless deposition for proton exchange membrane fuel cells”, Surfaces and Interfaces, Vol. 23, 2021, 100925.
  •  
  • 134. B.T. Huang, Y. Chatillon, C. Bonnet, F. Lapicque, S. Leclerc, M. Hinaje, S. Raël, “Experimental investigation of pinhole effect on MEA/cell aging in PEMFC”, International Journal of Hydrogen Energy, Vol. 38, 2013, Issue. 1, pp. 543-550.
  •  

This Article

Correspondence to

  • Sang Eui Lee
  • Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea

  • E-mail: selee@inha.ac.kr