Special Issue
  • Shape Memory Alloy-based Wearable Fabric Actuators: Form and Integration
  • Wonhee Ji*, Jaewoo Roh*, Hangyeol Baek*, Hyungbin Byun**, Hyunsoo Kim*, Jinwoo Jeong*, Il-Kwon Oh*†

  • * Mechanical Engineering Department, Korea Advanced Institute of Science and Technology
    ** Robotics Program, Korea Advanced Institute of Science and Technology

  • 형상기억합금 착용형 패브릭 액츄에이터 연구 동향: 구조 및 통합
  • 지원희* · 노재우* · 백한결* · 변형빈** · 김현수* · 정진우* · 오일권*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Otsuka, K., and Wayman, C.M., Shape memory materials, Cambridge University Press, 1999.
  •  
  • 2. Dimitris C. Lagoudas, Shape memory alloys. Vol. 1., Springer, Boston, US, 2008.
  •  
  • 3. Liu, Q., Ghodrat, S., Huisman, G., and Jansen, K.M.B., “Shape memory alloy actuators for haptic wearables: A review,” Materials & Design, Vol. 233, 2023, 112264.
  •  
  • 4. Hamid, Q.Y., Wan Hasan, W.Z., Azmah Hanim, M.A., Nuraini, A.A., Hamidon, M.N., and Ramli, H.R., “Shape memory alloys actuated upper limb devices: A review,” Sensors and Actuators Reports, Vol. 5, 2023, 100160.
  •  
  • 5. Shimoga, G., Kim, T.-H., and Kim, S.-Y., “An Intermetallic NiTi-Based Shape Memory Coil Spring for Actuator Technologies,” Metals, Vol. 11, No. 8, 2021, Article 1212.
  •  
  • 6. Jani, J.M., Leary, M., and Subic, A., “Designing shape memory alloy linear actuators: A review,” Journal of Intelligent Material Systems and Structures, Vol. 28, No. 13, 2017, pp. 1699–1718.
  •  
  • 7. Luji, F.F.J., Teo, K.T., Tan, S.F., and Yoong, H.P., “Heating and Cooling Mechanisms for SMA Actuator - A Brief Review,” Transactions on Science and Technology, Vol. 8, No. 3-3, 2021, pp. 425–431.
  •  
  • 8. Lee, S.-M., and Park, J., “A soft wearable exoglove for rehabilitation assistance: a novel application of knitted shape-memory alloy as a flexible actuator,” Fashion and Textiles, Vol. 11, No. 14, 2024, pp. 1–17.
  •  
  • 9. Lee, S.-M., Jung, W.-K., and Park, J., “Mapping actuating performance of knitted shape memory alloys and proposing design guidelines for assistive wearable applications,” Journal of Industrial Textiles, Vol. 53, No. 1, 2023, pp. 1–25.
  •  
  • 10. Zhang, H., Oh, S., Mahato, M., Yoo, H., and Oh, I.-K., “Knot-Architectured Fabric Actuators Based on Shape Memory Fibers,” Advanced Functional Materials, Vol. 32, No. 43, 2022, 2205732.
  •  
  • 11. Oh, S., Song, T.-E., Mahato, M., Kim, J.-S., Yoo, H., Lee, M.-J., Khan, M., Yeo, W.-H., and Oh, I.-K., “Easy-To-Wear Auxetic SMA Knot-Architecture for Spatiotemporal and Multimodal Haptic Feedbacks,” Advanced Materials, Vol. 35, No. 47, 2023, 2304442.
  •  
  • 12. Khan, M., Oh, S., Song, T.-E., Ji, W., Mahato, M., Yang, Y., Saatchi, D., Ali, S. S., Roh, J., Yun, D., Ryu, J.-H., and Oh, I.-K., “Wearable Haptics for Orthotropic Actuation Based on Perpendicularly Nested Auxetic SMA Knotting,” Advanced Materials, Vol. 37, No. 1, 2025, 2411353.
  •  
  • 13. Shin, J., Han, Y.-J., Lee, J.-H., and Han, M.-W., “Shape Memory Alloys in Textile Platform: Smart Textile-Composite Actuator and Its Application to Soft Grippers,” Sensors, Vol. 23, No. 3, 2023, 1518.
  •  
  • 14. Shin, D., Kim, K., Yang, S. Y., Park, J. H., Gong, Y. J., and Choi, H. R., “Woven Fabric Muscle for Soft Wearable Robotic Application Using Two-Dimensional Zigzag Shape Memory Alloy Actuator,” Soft Robotics, Vol. 11, No. 6, 2024, pp. 1008–1019.
  •  
  • 15. Xie, Q., Meng, Q., Yu, W., Wu, Z., Xu, R., Zeng, Q., Zhou, Z., Yang, T., and Yu, H., “Design of a SMA-based soft composite structure for wearable rehabilitation gloves,” Frontiers in Neurorobotics, Vol. 17, 2023, 1047493.
  •  
  • 16. Han, M.-W., Kim, M.-S., and Ahn, S.-H., “Shape memory textile composites with multi-mode actuations for soft morphing skins,” Composites Part B: Engineering, Vol. 198, 2020, 108170.
  •  
  • 17. Oh, S., Jang, J., Ji, W., Yang, Y., Khan, M., Majidi, C., Ryu, J.-H., and Oh, I.-K., “Embodied Auxetic Intelligence in a Glove-Type Wearable Haptic Interface Connecting Humans to Robots and the Metaverse,” Advanced Functional Materials, Vol. 35, No. 1, 2025, 2502222.
  •  
  • 18. Seo, S., Kang, M., and Han, M.W., “Shape Memory Alloys Patches to Mimic Rolling, Sliding, and Spinning Movements of the Knee,” Biomimetics, Vol. 9, No. 5, 2024, 255.
  •  
  • 19. Ali, H.F., and Kim, Y., “Design procedure and control of a small-scale knee exoskeleton using shape memory alloy springs,” Microsystem Technologies, Vol. 29, No. 8, 2023, pp. 1225-1234.
  •  
  • 20. Kim, C., Kim, G., Lee, Y., Lee, G., Han, S., Kang, D., ... and Koh, J.S., “Shape memory alloy actuator-embedded smart clothes for ankle assistance,” Smart Materials and Structures, Vol. 29, No. 5, 2020, 055003.
  •  
  • 21. Piao, J., Kim, M., Kim, J., Kim, C., Han, S., Back, I., ... and Koo, S., “Development of a comfort suit-type soft-wearable robot with flexible artificial muscles for walking assistance,” Scientific Reports, Vol. 13, No. 1, 2023, 4869.
  •  
  • 22. Park, S.J., Choi, K., Rodrigue, H., and Park, C.H., “Soft exosuit based on fabric muscle for upper limb assistance.” IEEE/ASME Transactions on Mechatronics, Vol. 28, No. 1, 2022, pp. 26-37.
  •  
  • 23. Jeong, J., Hyeon, K., Han, J., Park, C.H., Ahn, S.Y., Bok, S.K., and Kyung, K.U., “Wrist assisting soft wearable robot with stretchable coolant vessel integrated SMA muscle,” IEEE/ASME Transactions on Mechatronics, Vol. 27, No. 2, 2021, pp. 1046-1058.
  •  
  • 24. Chung, C., Hyeon, K., Jeong, J., Lee, D.Y., and Kyung, K.U., “Origami-Inspired Wearable Robot for Shoulder Abduction Assistance: A Double-Petal Mechanism Utilizing Shape Memory Alloy Actuators,” IEEE Robotics and Automation Letters, Vol. 9, No. 2, 2023, pp. 1484-1491.
  •  
  • 25. Hyeon, K., Jeong, J., Chung, C., Cho, M., Hussain, S., and Kyung, K.U., “Design of a wearable mechanism with shape memory alloy (SMA)-based artificial muscle for assisting with shoulder abduction,” IEEE Robotics and Automation Letters, Vol. 7, No. 4, 2022, pp. 10635-10642.
  •  
  • 26. Jeong, J., Hyeon, K., Jang, S.Y., Chung, C., Hussain, S., Ahn, S.Y., ... and Kyung, K.U., “Soft wearable robot with shape memory alloy (SMA)-based artificial muscle for assisting with elbow flexion and forearm supination/pronation,” IEEE Robotics and Automation Letters, Vol. 7, No. 3, 2022, pp. 6028-6035.
  •  
  • 27. Lee, K.S., Kim, Y., and Park, H.S., “Shape Memory Alloy-Based Reactive Tubular (SMART) Brake for Compact and Energy-Efficient Wearable Robot Design,” ACS Applied Materials & Interfaces, Vol. 16, No. 7, 2024, pp. 8974-8983.
  •  
  • 28. Chernyshov, G., Tag, B., Caremel, C., Cao, F., Liu, G., and Kunze, K., “Shape memory alloy wire actuators for soft, wearable haptic devices,” Proceedings of the 2018 ACM International Symposium on Wearable Computers, Oct. 2018, pp. 112-119.
  •  
  • 29. Hwang, D., Lee, J., and Kim, K., “On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators,” Smart Materials and Structures, Vol. 26, No. 10, 2017, 105002.
  •  
  • 30. Lim, B., Lee, C., and Hwang, D., “Development of embedded sensor system for 5-DOF finger-wearable tactile interface,” IEEE/ASME Transactions on Mechatronics, Vol. 26, No. 4, 2021, pp. 1728-1736.
  •  
  • 31. Baba, Y., Igarashi, H., Liu, R., and Sawada, H., “A Pin-Array Tactile Display Using Shape-Memory Alloy Wires for the Presentation of Various Tactile Sensation,” Int. J. Innov. Comput. Inf. Control, Vol. 20, 2024, pp. 653-664.
  •  
  • 32. Nakao, T., Kunze, K., Isogai, M., Shimizu, S., and Pai, Y.S., “Fingerflex: Shape memory alloy-based actuation on fingers for kinesthetic haptic feedback,” Proceedings of the 19th International Conference on Mobile and Ubiquitous Multimedia, Nov. 2020, pp. 240-244.
  •  
  • 33. Seo, S.W., and Kwon, S., “Finger Kinesthetic Haptic Feedback Device Using Shape Memory Alloy-based High-Speed Actuation Technique,” Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology, Nov. 2022, pp. 1-2.
  •  
  • 34. Messerschmidt, M.A., Muthukumarana, S., Hamdan, N.A. H., Wagner, A., Zhang, H., Borchers, J., and Nanayakkara, S.C., “Anisma: A prototyping toolkit to explore haptic skin deformation applications using shape-memory alloys,” ACM Transactions on Computer-Human Interaction, Vol. 29, No. 3, 2022. pp. 1-34.
  •  
  • 35. Simons, M.F., Digumarti, K.M., Le, N.H., Chen, H.Y., Carreira, S.C., Zaghloul, N.S., ... and Rossiter, J., “B: Ionic glove: A soft smart wearable sensory feedback device for upper limb robotic prostheses,” IEEE Robotics and Automation Letters, Vol. 6, No. 2, 2021, pp. 3311-3316.
  •  
  • 36. Muthukumarana, S., Elvitigala, D.S., Forero Cortes, J P., Matthies, D.J., and Nanayakkara, S., “Touch me gently: recreating the perception of touch using a shape-memory alloy matrix,” Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Apr. 2020, pp. 1-12.
  •  
  • 37. Foo, E.W., Dunne, L.E., and Holschuh, B., “User expectations and mental models for communicating emotions through compressive & warm affective garment actuation,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 5, No. 1, 2021, pp. 1-25.
  •  

This Article

Correspondence to

  • Il-Kwon Oh
  • Mechanical Engineering Department, Korea Advanced Institute of Science and Technology

  • E-mail: ikoh@kaist.ac.kr