Original Article
  • Electromagnetic Wave Attenuation Based on the Multi-scattering Mechanism for the 3D-Printed Corrugated-core Broadband Radar-absorbing Composite Structure
  • Jae-Won Shim*, Han-Jun Seo*, Geon-Gyu Lee*, Seung-Hyeon Kang*, Jong-Gyoung Yoo*, Min-Je Hwang**, Kwang-Sik Choi**, Young-Woo Nam*, ***†

  • * Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
    ** Korea Aerospace Industries, Ltd.
    *** Department of Smart Drone Engineering, Korea Aerospace University

  • 다중 산란 매커니즘을 활용한 전자파 저감 효과를 갖는 3D 프린팅 코러게이트 코어 광대역 전파흡수 샌드위치 복합재 구조 설계
  • 심재원* · 서한준* · 이건규* · 강승현* · 유종경** · 황민제** · 최광식** · 남영우*, ***†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. A. Chevalier and V. Laur, “Composites-based microwave absorbers: Toward a unified model,” Proc. IEEE Int. Microw. Symp., 2017, pp. 1804–1807.
  •  
  • 2. P. Toneguzzo, G. Viau, O. Acher, F. Fiévet-Vincent, and F. Fiévet, “Monodisperse Ferromagnetic Particles for Microwave Applications,” Advanced Materials, Vol. 10, No. 13, 1998, pp. 1032–1035.
  •  
  • 3. J. Neige, T. Lepetit, A. L. Adenot-Engelvin, N. Malléjac, A. Thiaville, and N. Vukadinovic, “Microwave Permeability of Fe Ni Mo Flakes-Polymer Composites with and Without an Applied Static Magnetic Field,” IEEE Transactions on Magnetics, Vol. 49, No. 3, 2013, pp. 1005–1008.
  •  
  • 4. Y. W. Nam, J. H. Choi, W. J. Lee, and C. G. Kim, “Fabrication of a Thin and Lightweight Microwave Absorber Containing Ni-Coated Glass Fibers by Electroless Plating,” Composites Science and Technology, Vol. 145, 2017, pp. 165–172.
  •  
  • 5. W. Li, C. Li, L. Lin, Y. Wang, and J. Zhang, “All-Dielectric Radar Absorbing Array Metamaterial Based on Silicon Carbide/Carbon Foam Material,” Journal of Alloys and Compounds, Vol. 781, 2019, pp. 883–891.
  •  
  • 6. A. Ling, G. Tan, Q. Man, Y. Lou, S. Chen, X. Gu, R.-W. Li, J. Pan, and X. Liu, “Broadband Microwave Absorbing Materials Based on MWCNTs’ Electromagnetic Wave Filtering Effect,” Composites Part B: Engineering, Vol. 171, 2019, pp. 214–221.
  •  
  • 7. W. Jiang, L. Yan, H. Ma, Y. Fan, J. Wang, M. Feng, and S. Qu, “Electromagnetic Wave Absorption and Compressive Behavior of a Three-Dimensional Metamaterial Absorber Based on 3D Printed Honeycomb,” Scientific Reports, Vol. 8, No. 1, 2018, p. 4817.
  •  
  • 8. S. Ghosh and S. Lim, “Perforated Lightweight Broadband Metamaterial Absorber Based on 3-D Printed Honeycomb,” IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2018, pp. 2379–2383.
  •  
  • 9. V. Laur, A. Maalouf, A. Chevalier, and F. Comblet, “Three-Dimensional Printing of Honeycomb Microwave Absorbers: Feasibility and Innovative Multiscale Topologies,” IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 2, 2021.
  •  
  • 10. D. D. Lim, et al., “Broadband Mechanical Metamaterial Absorber Enabled by Fused Filament Fabrication 3D Printing,” Additive Manufacturing, Vol. 55, 2022, p. 102856.
  •  
  • 11. J. M. Hyun and J. R. Lee, “Evaluation of Electromagnetic Characteristics of 3D-Printed Radar Absorbing Structures Based on Three-Dimensional Period Pattern Surface,” Measurement, Vol. 227, 2024, p. 114213.
  •  
  • 12. C. Sun, D. Li, T. Liu, Q. An, C. Zhang, Y. Li, and W. Liao, “Design of Functionally Gradient Metastructure with Ultra-Broadband and Strong Absorption,” Composites Part B, Vol. 280, 2024, p. 111484.
  •  
  • 13. L. Yin, J. Doyhamboure--Fouquet, X. Tian, and D. Li, “Design and Characterization of Radar Absorbing Structure Based on Gradient-Refractive-Index Metamaterials,” Composites Part B, Vol. 132, 2018, pp. 178–187.
  •  
  • 14. J. Ren and J. Y. Yin, “3D-Printed Low-Cost Dielectric-Resonator-Based Ultra-Broadband Microwave Absorber Using Carbon-Loaded Acrylonitrile Butadiene Styrene Polymer,” Materials, Vol. 11, 2018, p. 1249.
  •  
  • 15. J. Y. Cho, Y. C. Oh, S. C. Shin, S. K. Lee, H. S. Seo, and S. E. Lee, “Fusedly Deposited Frequency-Selective Composites Fabricated by a Dual-Nozzle 3D Printing as Microwave Filter,” Polymers, Vol. 16, 2024, p. 786.
  •  
  • 16. J. S. Noh, S. M. Hong, V. T. Hoang, B. S. Kwak, and Y. W. Nam, “3D-Printed Broadband Electromagnetic Wave-Absorbing Basalt/CF/PLA Composites with a High Current Path for Lightning Strike Protection,” Journal of Composite Materials, Vol. 58, 2024, pp. 3029–3043.
  •  
  • 17. S. Heimbs, J. Cichosz, M. Klaus, S. Kilchert, and A. F. Johnson, “Sandwich Structures with Textile-Reinforced Composite Foldcores Under Impact Loads,” Composite Structures, Vol. 92, 2010, pp. 1485–1497.
  •  
  • 18. X. Zhou, H. Wang, and Z. You, “Mechanical Properties of Miura-Based Folded Cores Under Quasi-Static Loads,” Thin-Walled Structures, Vol. 82, 2014.
  •  
  • 19. S. Heimbs, P. Middendorf, C. Hampf, F. Hähnel, and K. Wolf, “Aircraft Sandwich Structures with Folded Core Under Impact Load,” Proc. 8th Int. Conf. Sandwich Structures (ICSS 8), 2008, pp. 369–380.
  •  
  • 20. S. Kilchert, A. F. Johnson, and H. Voggenreiter, “Modelling the Impact Behaviour of Sandwich Structures with Folded Composite Cores,” Composites Part A: Applied Science and Manufacturing, Vol. 57, 2014, pp. 16–26.
  •  
  • 21. Z. Wang, C. Zhou, V. Khaliulin, and A. Shabalov, “An Experimental Study on the Radar Absorbing Characteristics of Folded Core Structures,” Composite Structures, Vol. 194, 2018, pp. 199–207.
  •  
  • 22. Z. Zhang, H. Lei, H. Yang, M. Xu, M. Chen, C. Wang, and D. Fang, “Radar-Stealth and Load-Bearing Corrugated Sandwich Structures with Superior Environmental Adaptability,” Composites Science and Technology, Vol. 227, 2022, p. 109594.
  •  
  • 23. M. Petroff, J. Appel, K. Rostem, C. L. Bennett, J. Eimer, T. Marriage, J. Ramirez, and E. J. Wollack, “A 3D-Printed, Broadband Millimeter Wave Absorber,” Review of Scientific Instruments, Vol. 90, 2019, p. 024701.
  •  
  • 24. M. Abdullahi and M. Ali, “Additively Manufactured Metastructure Design for Broadband Radar Absorption,” Beni-Suef University Journal of Basic and Applied Sciences, Vol. 10, 2021, pp. 1–12.
  •  
  • 25. Z. Viskadourakis, K. Vasilopoulos, E. Economou, C. M. Soukoulis, and G. Kenanakis, “Electromagnetic Shielding Effectiveness of 3D Printed Polymer Composites,” Applied Physics A, Vol. 123, 2017, pp. 1–7.
  •  
  • 26. H. Mei, X. Zhao, S. Zhou, D. Han, S. Xiao, and L. Cheng, “3D-Printed Oblique Honeycomb Al2O3/SiCw Structure for Electromagnetic Wave Absorption,” Chemical Engineering Journal, Vol. 372, 2019, pp. 940–945.
  •  
  • 27. X. Chen, Z. Wu, Z. Zhang, and Y. Zou, “Ultra-Broadband and Wide-Angle Absorption Based on 3D-Printed Pyramid,” Optics and Laser Technology, Vol. 124, 2020, p. 105972.
  •  
  • 28. C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar Stealth and Mechanical Properties of a Broadband Radar Absorbing Structure,” Composites Part B: Engineering, Vol. 123, 2017, pp. 19–27.
  •  
  • 29. Q. Li, X. Yin, W. Duan, L. Kong, B. Hao, and F. Ye, “Electrical, Dielectric and Microwave-Absorption Properties of Polymer Derived SiC Ceramics in X Band,” Journal of Alloys and Compounds, Vol. 565, 2013, pp. 66–72.
  •  
  • 30. Z. Liu, S. Wang, J. Shao, et al., “3D Radar Stealth Composite Hierarchical Grid Structure with Extremely Broadband Absorption Performance and Effective Load Bearing,” Composites Part B: Engineering, Vol. 247, 2022, p. 110316.
  •  
  • 31. Z. Liu, R. Zhang, S. Wang, et al., “Design and Fabrication of an All-Composite Ultra-Broadband Absorbing Structure with Superior Load-Bearing Capacity,” Composites Science and Technology, Vol. 240, 2023, p. 110094.
  •  
  • 32. L. Cheng, Y. Si, Z. Ji, et al., “A Novel Linear Gradient Carbon Fiber Array Integrated Square Honeycomb Structure with Electromagnetic Wave Absorption and Enhanced Mechanical Performances,” Composite Structures, Vol. 305, 2023, p. 116510.
  •  
  • 33. J. C. S. Chieh, B. Dick, S. Loui, and J. D. Rockway, “Development of a Ku-Band Corrugated Conical Horn Using 3-D Print Technology,” IEEE Antennas and Wireless Propagation Letters, Vol. 13, 2014, pp. 201–204.
  •  
  • 34. G. L. Huang, S. G. Zhou, C. Y. D. Sim, T. H. Chio, and T. Yuan, “Lightweight Perforated Waveguide Structure Realized by 3-D Printing for RF Applications,” IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 2017, pp. 3897–3904.
  •  
  • 35. M. Ahmadloo and P. Mousavi, “A Novel Integrated Dielectric-and-Conductive Ink 3D Printing Technique for Fabrication of Microwave Devices,” Proc. IEEE MTT-S Int. Microwave Symp. Digest, 2013, pp. 1–3.
  •  
  • 36. X. An, X. Yuan, and H. Fan, “Meta-Kagome Lattice Structures for Broadband Vibration Isolation,” Engineering Structures, Vol. 277, 2023, p. 115403.
  •  
  • 37. N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan, R. Zhang, J. Liu, and Z. Zeng, “Ultrathin Cellulose Nanofiber Assisted Ambient-Pressure-Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels,” Advanced Materials, Vol. 35, No. 1, 2023, p. 2207969.
  •  
  • 38. B. Li, N. Wu, Y. Yang, et al., “Graphene Oxide-Assisted Multiple Cross-Linking of MXene for Large-Area, High-Strength, Oxidation-Resistant, and Multifunctional Films,” Advanced Functional Materials, Vol. 33, No. 11, 2023, p. 2213357.
  •  
  • 39. J. Du, T. Li, Z. Xu, et al., “Structure–Activity Relationship in Microstructure Design for Electromagnetic Wave Absorption Applications,” Small Structures, 2023, p. 2300152.
  •  
  • 40. P. Singh, V. K. Babbar, A. Razdan, R. K. Puri, and T. C. Goel, “Complex Permittivity, Permeability, and X-Band Microwave Absorption of CaCoTi Ferrite Composites,” Journal of Applied Physics, Vol. 87, 2000, pp. 4362–4366.
  •  
  • 41. X. G. Liu, B. Li, D. Y. Geng, W. B. Cui, F. Yang, Z. G. Xie, D. J. Kang, and Z. D. Zhang, “(Fe, Ni)/C Nanocapsules for Electromagnetic-Wave-Absorber in the Whole Ku-Band,” Carbon, Vol. 47, 2009, pp. 470–474.
  •  
  • 42. X. F. Zhang, X. L. Dong, H. Huang, B. Lv, J. P. Lei, and C. J. Choi, “Microstructure and Microwave Absorption Properties of Carbon-Coated Iron Nanocapsules,” Journal of Physics D: Applied Physics, Vol. 40, 2007, pp. 5383–5387.
  •  
  • 43. C. L. Zhu, M. L. Zhang, Y. J. Qiao, G. Xiao, F. Zhang, and Y. J. Chen, “Fe3O4/TiO2 Core/Shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics,” Journal of Physical Chemistry C, Vol. 114, 2010, pp. 16229–16235.
  •  
  • 44. M. Park, J. Choi, and S. Kim, “Wide Bandwidth Pyramidal Absorbers of Granular Ferrite and Carbonyl Iron Powders,” IEEE Transactions on Magnetics, Vol. 36, No. 5, 2000, pp. 3272–3274.
  •  
  • 45. L. Li, Y. Yang, and C. Liang, “A Wide-Angle Polarization-Insensitive Ultra-Thin Metamaterial Absorber With Three Resonant Modes,” Journal of Applied Physics, Vol. 110, No. 6, 2011, p. 063702.
  •  
  • 46. D. Lim, D. Lee, and S. Lim, “Angle- and Polarization-Insensitive Metamaterial Absorber Using Via Array,” Scientific Reports, Vol. 6, 2016, p. 39686.
  •  
  • 47. Q. Zhou, X. Yin, F. Ye, X. Liu, L. Cheng, and L. Zhang, “A Novel Two-Layer Periodic Stepped Structure for Effective Broadband Radar Electromagnetic Absorption,” Materials & Design, Vol. 123, 2017, pp. 46–53.
  •  
  • 48. S. Zhou, G. Zhang, Z. Nie, H. Liu, H. Yu, Y. Liu, K. Bi, W. Geng, H. Duan, and X. Chou, “Recent Advances in 3D Printed Structures for Electromagnetic Wave Absorbing and Shielding,” Materials Chemistry Frontiers, Vol. 6, 2022, pp. 1736–1751.
  •  
  • 49. T. Shi, L. Jin, L. Han, M. C. Tang, H. X. Xu, and C. W. Qiu, “Dispersion-Engineered, Broadband, Wide-Angle, Polarization-Independent Microwave Metamaterial Absorber,” IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 2020, pp. 229–238.
  •  
  • 50. X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-Independent Wide-Angle Triple-Band Metamaterial Absorber,” Optics Express, Vol. 19, No. 10, 2011, pp. 9401–9407.
  •  
  • 51. D. M. Li, W. H. Pan, Y. H. Guo, and X. Wang, “Evolutionary Design of Impedance Gradient Honeycomb Metastructure with Broadband Microwave Absorption and Effective Mechanical Resistance,” in Photonics & Electromagnetics Research Symposium (PIERS), IEEE, 2021, pp. 705–711.
  •  
  • 52. H. B. Zhang, P. H. Zhou, L. W. Deng, J. L. Xie, D. F. Liang, and L. J. Deng, “Frequency-Dispersive Resistance of High Impedance Surface Absorber with Trapezoid-Coupling Pattern,” Journal of Applied Physics, Vol. 112, 2012, p. 014106.
  •  
  • 53. C. Zhang, J. Yang, W. K. Cao, W. Yuan, J. C. Ke, L. X. Yang, et al., “Transparently Curved Metamaterial with Broadband Millimeter Wave Absorption,” Photonics Research, Vol. 7, No. 4, 2019, pp. 478–485.
  •  
  • 54. B. Yu, B. Han, P. B. Su, C. Y. Ni, Q. C. Zhang, and T. J. Lu, “Graded Square Honeycomb as Sandwich Core for Enhanced Mechanical Performance,” Materials & Design, Vol. 89, 2016, pp. 642–652.
  •  
  • 55. L. L. Yan, K. Y. Zhu, N. Chen, X. T. Zheng, and M. Quaresimin, “Energy-Absorption Characteristics of Tube-Reinforced Absorbent Honeycomb Sandwich Structure,” Composite Structures, Vol. 255, 2021, p. 112946.
  •  
  • 56. L. Zhang, B. Song, A. G. Zhao, R. J. Liu, L. Yang, and Y. S. Shi, “Study on Mechanical Properties of Honeycomb Pentamode Structures Fabricated by Laser Additive Manufacturing: Numerical Simulation and Experimental Verification,” Composite Structures, Vol. 226, 2019, p. 111199.
  •  
  • 57. X. W. Li, X. Yu, J. W. Chua, H. P. Lee, J. Ding, and W. Zhai, “Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption,” Small, Vol. 17, No. 24, 2021, p. 2100336.
  •  
  • 58. Y. X. Huang, D. Wu, M. J. Chen, K. Zhang, and D. N. Fang, “Evolutionary Optimization Design of Honeycomb Metastructure with Effective Mechanical Resistance and Broadband Microwave Absorption,” Carbon, Vol. 177, 2021, pp. 79–89.
  •  
  • 59. L. Zhang, B. Song, R. J. Liu, A. G. Zhao, J. L. Zhang, L. R. Zhuo, et al., “Effects of Structural Parameters on the Poisson’s Ratio and Compressive Modulus of 2D Pentamode Structures Fabricated by Selective Laser Melting,” Engineering, Vol. 6, No. 1, 2020, pp. 56–67.
  •  
  • 60. J. M. Hyun and J. R. Lee, “Electromagnetic Characteristics of 3D-Printed Composites by Free-Space Measurement,” Measurement, Vol. 217, 2023, p. 1130.
  •  

This Article

Correspondence to

  • Young-Woo Nam
  • * Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
    *** Department of Smart Drone Engineering, Korea Aerospace University

  • E-mail: ywnam@kau.ac.kr