Original Article
  • Damage Behavior of Oxide/Oxide Ceramic Composites with Self-protecting Oxide Layers for Improved Atomic Oxygen Resistance in VLEO Satellites
  • Chae-Hwan Lim*, Dong-Jun Hong*, Hanna Jang*, Seung-Hyeon Kang*, Sang-Hoon Lee**, Hyun-Seok Ko**, Won-Ho Choi***, Young-Woo Nam*, ****†

  • * Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
    ** Materials Digitalization Center, Korea Institute of Ceramic Engineering & Technology, Republic of Korea
    *** Aerospace R&D Center, Korean Air
    **** Department of Smart Drone Engineering, Korea Aerospace University

  • 초저궤도 우주환경에서 자기 강화 원자산소 저항 산화층이 형성된 산화물/산화물 세라믹 복합재 구조의 손상 거동 평가
  • 임채환* · 홍동준* · 장한나* · 강승현* · 이상훈** · 고현석** · 최원호*** · 남영우*, ****†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Spektor, R., and Jones, K. L., “A breath of fresh air: Air-scooping electric propulsion in very low earth orbit,” Cent Space Policy Strateg, 2021.
  •  
  • 2. Le, V. T., San Ha, N., and Goo, N. S., “Advanced Sandwich Structures for Thermal Protection Systems in Hypersonic Vehicles: A Review,” Composites Part B: Engineering, Vol. 226, 2021, pp. 109301.
  •  
  • 3. Zawada, L. P., Hay, R. S., Lee, S. S., and Staehler, J., “Characterization and High‐Temperature Mechanical Behavior of an Oxide/Oxide Composite,” Journal of the American Ceramic Society, Vol. 86, No. 6, 2003, pp. 981-990.
  •  
  • 4. Behrendt, T., Hackemann, S., Mechnich, P., Shi, Y., Hönig, S., Hofmann, S., and Koch, D., “Development and Test of Oxide/Oxide Ceramic Matrix Composites Combustor Liner Demonstrators for Aero-Engines,” Journal of Engineering for Gas Turbines and Power, Vol. 139, No. 3, 2017, pp. 031507.
  •  
  • 5. Ramachandran, K., Bear, J. C., and Jayaseelan, D. D., “Oxide‐Based Ceramic Matrix Composites for High‐Temperature Environments: A Review,” Advanced Engineering Materials, 2025, pp. 2402000.
  •  
  • 6. Zawada, L. P., Hay, R. S., Lee, S. S., and Staehler, J., “Characterization and High‐Temperature Mechanical Behavior of an Oxide/Oxide Composite,” Journal of the American Ceramic Society, Vol. 86, No. 6, 2003, pp. 981-990.
  •  
  • 7. Crisp, N. H., Roberts, P. C., Livadiotti, S., Oiko, V. T. A., Edmondson, S., Haigh, S. J., et al., “The Benefits of Very Low Earth Orbit for Earth Observation Missions,” Progress in Aerospace Sciences, Vol. 117, 2020, pp. 100619.
  •  
  • 8. Llop, J. V., Roberts, P. C., Hao, Z., Tomas, L. R., and Beauplet, V., “Very Low Earth Orbit Mission Concepts for Earth Observation: Benefits and Challenges,” Reinventing Space Conference, 2014, pp. 18-21.
  •  
  • 9. Chen, G., Wu, S., Deng, Y., Jiao, J., and Zhang, Q., “VLEO Satellite Constellation Design for Regional Aviation and Marine Coverage,” IEEE Transactions on Network Science and Engineering, Vol. 11, No. 1, 2024, pp. 1188-1201.
  •  
  • 10. Llop, J. V., Roberts, P. C., Hao, Z., Tomas, L. R., and Beauplet, V., “Very Low Earth Orbit Mission Concepts for Earth Observation: Benefits and Challenges,” Reinventing Space Conference, 2014, pp. 18-21.
  •  
  • 11. Han, J. H., and Kim, C. G., “Low Earth Orbit Space Environment Simulation and Its Effects on Graphite/Epoxy Composites,” Composite Structures, Vol. 72, No. 2, 2006, pp. 218-226.
  •  
  • 12. Moon, J. B., Kim, M. G., Kim, C. G., and Bhowmik, S., “Improvement of Tensile Properties of CFRP Composites under LEO Space Environment by Applying MWNTs and Thin-Ply,” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 6, 2011, pp. 694-701.
  •  
  • 13. Connell, J. W., Young, P. R., Kalil, C. G., Chang, A. C., and Siochi, E. J., “The Effect of Low Earth Orbit Exposure on Some Experimental Fluorine and Silicon-Containing Polymers,” NASA Conference Publication, 1994, pp. 157.
  •  
  • 14. Picone, J. M., et al., “NRLMSISE‐00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues,” Journal of Geophysical Research: Space Physics, Vol. 107, No. A12, 2002, pp. SIA-15.
  •  
  • 15. Vaidya, S., Traub, C., Romano, F., Herdrich, G. H., Chan, Y. A., Fasoulas, S., et al., “Development and Analysis of Novel Mission Scenarios Based on Atmosphere-Breathing Electric Propulsion (ABEP),” CEAS Space Journal, Vol. 14, No. 4, 2022, pp. 689-706.
  •  
  • 16. Kimoto, Y., Yukumatsu, K., Goto, A., Miyazaki, E., and Tsuchiya, Y., “MDM: A Flight Mission to Observe Materials Degradation In-Situ on Satellite in Super Low Earth Orbit,” Acta Astronautica, Vol. 179, 2021, pp. 695-701.
  •  
  • 17. Liu, G., Cheng, L., Li, K., Chen, Z., Xiong, X., and Luan, X., “Damage Behavior of Atomic Oxygen on Zirconium Carbide Coating Modified Carbon/Carbon Composite,” Ceramics International, Vol. 46, No. 3, 2020, pp. 3324-3331.
  •  
  • 18. Luan, X., Liu, G., Tian, M., Chen, Z., and Cheng, L., “Damage Behavior of Atomic Oxygen on a Hafnium Carbide-Modified C/SiC Composite,” Composites Part B: Engineering, Vol. 219, 2021, pp. 108888.
  •  
  • 19. Bapat, A., Salunkhe, P. B., and Patil, A. V., “Hall-Effect Thrusters for Deep-Space Missions: A Review,” IEEE Transactions on Plasma Science, Vol. 50, No. 2, 2022, pp. 189-202.
  •  
  • 20. Adam, J. C., Boeuf, J. P., Dubuit, N., Dudeck, M., Garrigues, L., Gresillon, D., et al., “Physics, Simulation and Diagnostics of Hall Effect Thrusters,” Plasma Physics and Controlled Fusion, Vol. 50, No. 12, 2008, pp. 124041.
  •  
  • 21. Boniface, C., Garrigues, L., Hagelaar, G. J. M., Boeuf, J. P., Gawron, D., and Mazouffre, S., “Anomalous Cross Field Electron Transport in a Hall Effect Thruster,” Applied Physics Letters, Vol. 89, No. 16, 2006, 161503.
  •  
  • 22. Schwertheim, A., and Knoll, A., “Experimental Investigation of a Water Electrolysis Hall Effect Thruster,” Acta Astronautica, Vol. 193, 2022, pp. 607-618.
  •  
  • 23. Munro-O’Brien, T. F., and Ryan, C. N., “Performance of a Low Power Hall Effect Thruster with Several Gaseous Propellants,” Acta Astronautica, Vol. 206, 2023, pp. 257-273.
  •  
  • 24. Andreussi, T., Cifali, G., Giannetti, V., Piragino, A., Ferrato, E., Rossodivita, A., et al., “Development and Experimental Validation of a Hall Effect Thruster Ram-EP Concept,” 35th International Electric Propulsion Conference, 2017, pp. 8-12.
  •  
  • 25. Tejeda, J. M., and Knoll, A., “A Water Vapour Fuelled Hall Effect Thruster: Characterization and Comparison with Oxygen,” Acta Astronautica, Vol. 211, 2023, pp. 702-715.
  •  
  • 26. Kwon, K., Lantoine, G., Russell, R. P., and Mavris, D. N., “A Study on Simultaneous Design of a Hall Effect Thruster and Its Low-Thrust Trajectory,” Acta Astronautica, Vol. 119, 2016, pp. 34-47.
  •  
  • 27. Gawron, D., Mazouffre, S., Sadeghi, N., and Héron, A., “Influence of Magnetic Field and Discharge Voltage on the Acceleration Layer Features in a Hall Effect Thruster,” Plasma Sources Science and Technology, Vol. 17, No. 2, 2008, pp. 025001.
  •  
  • 28. Garrigues, L., “Computational Study of Hall-Effect Thruster with Ambient Atmospheric Gas as Propellant,” Journal of Propulsion and Power, Vol. 28, No. 2, 2012, pp. 344-354.
  •  
  • 29. Schwertheim, A., and Knoll, A., “Low Power Thrust Measurements of the Water Electrolysis Hall Effect Thruster,” CEAS Space Journal, Vol. 14, No. 1, 2022, pp. 3-17.
  •  
  • 30. Brault, P., Thomann, A. L., and Cavarroc, M., “Theory and Molecular Simulations of Plasma Sputtering, Transport and Deposition Processes,” The European Physical Journal D, Vol. 77, No. 2, 2023, pp. 19.
  •  
  • 31. Tahara, H., Imanaka, K., and Yuge, S., “Effects of Channel Wall Material on Thrust Performance and Plasma Characteristics of Hall-Effect Thrusters,” Vacuum, Vol. 80, No. 11-12, 2006, pp. 1216-1222.
  •  
  • 32. Martinez, R. A., Dao, H., and Walker, M. L., “Power Deposition into the Discharge Channel of a Hall Effect Thruster,” Journal of Propulsion and Power, Vol. 30, No. 1, 2014, pp. 209-220.
  •  
  • 33. Barral, S., Makowski, K., Peradzyński, Z., Gascon, N., and Dudeck, M., “Wall Material Effects in Stationary Plasma Thrusters. II. Near-Wall and In-Wall Conductivity,” Physics of Plasmas, Vol. 10, No. 10, 2003, pp. 4137-4152.
  •  
  • 34. Tejeda, J. M., and Knoll, A., “An Oxygen-Fuelled Hall Effect Thruster: Channel Length, Ceramic Walls and Anode Material Experimental Analyses,” Acta Astronautica, Vol. 203, 2023, pp. 268-279.
  •  
  • 35. Ahedo, E., Gallardo, J. M., and Martínez-Sánchez, M., “Effects of the Radial Plasma-Wall Interaction on the Hall Thruster Discharge,” Physics of Plasmas, Vol. 10, No. 8, 2003, pp. 3397-3409.
  •  
  • 36. Cao, S., Wang, X., Ren, J., Ouyang, N., Zhang, G., Zhang, Z., and Tang, H., “Performance and Plume Evolutions During the Lifetime Test of a Hall-Effect Thruster,” Acta Astronautica, Vol. 170, 2020, pp. 509-520.
  •  
  • 37. Grimaud, L., and Mazouffre, S., “Performance Comparison Between Standard and Magnetically Shielded 200 W Hall Thrusters with BN-SiO2 and Graphite Channel Walls,” Vacuum, Vol. 155, 2018, pp. 514-523.
  •  
  • 38. Choi, K. S., Sim, D., Choi, W., Shin, J. H., and Nam, Y. W., “Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band,” Composites Research, 35, No. 3, 2022, pp. 201-215.
  •  
  • 39. Mallesh, S., Shim, D., Ko, H., Kang, Y., Hong, D., Kwak, B., and Nam, Y., “Radar Absorption Characteristics of Ceramic Oxide Fiber/aluminosilicate-sendust Composite Structure at Ultrahigh Temperatures”, Journal of Alloys and Compounds, Vol. 968, 2023, 171979.
  •  
  • 40. Choi, W., Mallesh, S., Ko, H., Kim, M., Shin, J., Kim, K., and Nam, Y., “Fabrication of Thin and Lightweight Cobalt-coated Quartz Fiber/aluminosilicate Composites for High-temperature Microwave Absorption”, Ceramics International, Vol. 49, 2023, pp. 13586-13600.
  •  
  • 41. Li, G., Cao, Y., Liu, S., Luo, J., Dong, S., and Jiang, H., “Efficient Leaching of Potassium from K-feldspar in KOH-Ca(OH)2 Solution via One-step Hydrothermal Process”, Separation and Purification Technology, Vol. 360, 2025, 130999.
  •  
  • 42. Hong, D. J., Jang, H., Lim, C. H., Shin, H. Y., Park, K. W., Lee, S. H., Ko, H. S., Kwak, B. S., Choi, W. H., and Nam, Y. W., “Electromechanical Behavior of Foam-based Nickel-coated Basalt Fiber/aluminosilicate Broadband Stealth Composite Structures in Ultra-high Temperature,” Proceedings of the KSAS Conference, 2024, pp.142-143.
  •  
  • 43. ASTM International, Standard Practices for Ground Laboratory Atomic Oxygen Interaction Evaluation of Materials for Space Applications, ASTM E2089-15(2020), ASTM International, West Conshohocken (USA), 2020.
  •  
  • 44. ASTM International, Standard Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment, ASTM E595-15(2021), ASTM International, West Conshohocken (USA), 2021.
  •  
  • 45. ASTM International, Standard Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature, ASTM C1275-10, ASTM International, West Conshohocken (USA), 2010.
  •  
  • 46. Ramachandran, K., Bear, J. C., and Jayaseelan, D. D., “Oxide-Based Ceramic Matrix Composites for High-Temperature Environments: A Review”, Advanced Engineering Materials, Vol. 27, 2025, 2402000.
  •  
  • 47. Cha, J. H., Kim, Y. H., Kumar, S. K. S., Choi, C., and Kim, C. G., “Ultra-high-molecular-weight Polyethylene as a Hypervelocity Impact Shielding Material for Space Structures”, Acta Astronautica, Vol. 168, 2020, pp. 182-190.
  •  
  • 48. Cha, J. H., Kumar, S. K. S., Noh, J. E., Choi, J. S., Kim, Y. H., and Kim, C. G., “Ultra-high-molecular-weight polyethylene/hydrogen-rich Benzoxazine Composite with Improved Interlaminar Shear Strength for Cosmic Radiation Shielding and Space Environment Applications”, Composite Structures, Vol. 300, 2022, 116157.
  •  
  • 49. Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C., “NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues,” Journal of Geophysical Research: Space Physics, Vol. 107, No. A12, 2002, pp. 1468.
  •  

This Article

Correspondence to

  • Young-Woo Nam
  • * Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
    **** Department of Smart Drone Engineering, Korea Aerospace University

  • E-mail: ywnam@kau.ac.kr