Original Article
  • Metal-Organic Frameworks Coated Cellulose Filter for Highly Efficient Ammonia Gas Adsorptive Removal
  • Seonyeong Kang*, Ju Hwan Kim*, Eunyeong Cho*, Yeonbhin Kim*, Hye-ryeong Park*, Jae Ryung Choi*† , Hee Jung Lee*†

  • * Composites & Convergence Materials Research Division, Korea Institute of Materials Science (KIMS)

  • Metal-Organic Frameworks 코팅 셀룰로오스 필터를 활용한 고효율 암모니아 가스 흡착 제거
  • 강선영* · 김주환* · 조은영* · 김연빈* · 박혜령* · 최재령*† · 이희정*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Kojima, Y., “Safety of ammonia as a hydrogen energy carrier,” International Journal of Hydrogen Energy, Vol. 50, 2024, pp. 732-739.
  •  
  • 2. Khan, N.A., Hasan, Z., and Jhung, S.H., “Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review,” Journal of Hazardous Materials, Vol. 244-245, 2013, pp. 444-456.
  •  
  • 3. Vikrant, K., Kumar, V., Kim, K.-H., and Kukkar, D., “Metal–organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia,” Journal of Materials Chemistry A, Vol. 5, No. 44, 2017, pp. 22877-22896.
  •  
  • 4. Le, V.N., Tu, T.N., and Kim, J., “Facile synthesis of Cu-based metal–organic framework/chitosan composite granules for toluene adsorption,” Separation and Purification Technology, Vol. 306, 2023, pp. 122718.
  •  
  • 5. Xiao, Y., Wu, Y., Sun, C., Sun, F., Zhou, E., lei, C., and Zhang, D., “UiO-66-NH2 incorporated nanofibrous membranes by direct electrospinning/in-situ growth for toluene adsorption,” Journal of Environmental Chemical Engineering, Vol. 13, No. 1, 2025, pp. 115198.
  •  
  • 6. Zhang, B., Chen, H., Jiang, L., Shen, Y., Zhao, D., and Zhou, Z., “A breathing A4 paper by in situ growth of green metal–organic frameworks for air freshening and cleaning,” Chinese Journal of Chemical Engineering, Vol. 52, 2022, pp. 95-102.
  •  
  • 7. Esfandiari, K., Mahdavi, A.R., Ghoreyshi, A.A., and Jahanshahi, M., “Optimizing parameters affecting synthetize of CuBTC using response surface methodology and development of AC@CuBTC composite for enhanced hydrogen uptake,” International Journal of Hydrogen Energy, Vol. 43, No. 13, 2018, pp. 6654-6665.
  •  
  • 8. Li, Z., Chen, M., Zhu, W., Xin, R., Yang, J., Hu, S., You, J., Ryu, D.Y., Lim, S.-H., Li, S., and Kim, J., “Advances and perspectives of composite nanoarchitectonics of nanocellulose/metal-organic frameworks for effective removal of volatile organic compounds,” Coordination Chemistry Reviews, Vol. 520, 2024, pp. 216124.
  •  
  • 9. Anzlovar, A., and Zagar, E., “Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies,” Nanomaterials, Vol. 12, No. 11, 2022, pp. 1837.
  •  
  • 10. Anand, B., Kumar, V., Younis, S.A., and Kim, K.-H., “HKUST-1 infused woven cotton filter for enhanced adsorptive removal of toluene vapor from gaseous streams,” Separation and Purification Technology, Vol. 299, 2022, pp. 121743.
  •  
  • 11. Butova, V.V., Pankin, I.A., Burachevskaya, O.A., Vetlitsyna-Novikova, K.S., and Soldatov, A.V., “New fast synthesis of MOF-801 for water and hydrogen storage: Modulator effect and recycling options,” Inorganica Chimica Acta, Vol. 514, 2021, pp. 120025.
  •  
  • 12. Ye, W., Li, W., Wang, K., Yin, W., Chai, W., Qu, Y., Rui, Y., and Tang, B., “ZIF-67@Se@MnO2: A Novel Co-MOF-Based Composite Cathode for Lithium–Selenium Batteries,” The Journal of Physical Chemistry C, Vol. 123, No. 4, 2018, pp. 2048-2055.
  •  
  • 13. Kanezashi, M., Yamamoto, A., Yoshioka, T., and Tsuru, T., “Characteristics of ammonia permeation through porous silica membranes,” AIChE Journal, Vol. 56, No. 5, 2009, pp. 1204-1212.
  •  
  • 14. Kawamura, K., Miyazawa, K., and Kent, L., “The Past, Present and Future in Tube- and Paper-Based Colorimetric Gas Detectors,” Applied Chem, Vol. 1, No. 1, 2021, pp. 14-40.
  •  
  • 15. Shimizu, Y., Miyagi, A., and Nakagawa, T., “Development of continuous measurement system for hydrogen and impurity gases using detector tube,” Review of Scientific Instruments, Vol. 94, No. 9, 2023, pp. 095114.
  •  
  • 16. Gu, Y., Anjali, B.A., Yoon, S., Choe, Y., Chung, Y.G., and Park, D.-W., “Defect-engineered MOF-801 for cycloaddition of CO2 with epoxides,” Journal of Materials Chemistry A, Vol. 10, No. 18, 2022, pp. 10051-10061.
  •  
  • 17. Habibi, B., Soleimani Abhari, P., Eisari, M., Morsali, A., and Yan, X.W., “Mixed-Linker Zr-Metal-Organic Framework with Improved Lewis Acidic Sites for CO2 Fixation Reaction Catalysis,” Inorg Chem, Vol. 63, No. 44, 2024, pp. 21354-21363.
  •  
  • 18. Arkoti, N.K., and Pal, K., “Selective Detection of NH3 Gas by Ti3C2Tx Sensors with the PVDF-ZIF-67 Overlayer at Room Temperature,” ACS Sensors, Vol. 9, No. 3, 2024, pp. 1465-1474.
  •  
  • 19. Nijem, N., Fürsich, K., Bluhm, H., Leone, S.R., and Gilles, M.K., “Ammonia Adsorption and Co-adsorption with Water in HKUST-1: Spectroscopic Evidence for Cooperative Interactions,” The Journal of Physical Chemistry C, Vol. 119, No. 44, 2015, pp. 24781-24788.
  •  
  • 20. Münch, A.S., and Mertens, F.O.R.L., “The Lewis acidic and basic character of the internal HKUST-1 surface determined by inverse gas chromatography,” CrystEngComm, Vol. 17, No. 2, 2015, pp. 438-447.
  •  
  • 21. Kim, K.C., Yu, D., and Snurr, R.Q., “Computational screening of functional groups for ammonia capture in metal-organic frameworks,” Langmuir, Vol. 29, No. 5, 2013, pp. 1446-1456.
  •  

This Article

Correspondence to

  • Jae Ryung Choi , Hee Jung Lee
  • Composites & Convergence Materials Research Division, Korea Institute of Materials Science (KIMS)

  • E-mail: jryung@kims.re.kr, hj0889@kims.re.kr