Original Article
  • Analysis of Impact Damage and Internal Pressure Performance of a Composite Pressure Vessel according to Stacking Sequence Design Using Finite Element Analysis
  • Kyoungmin Park*, **, Yuna Oh*, Kwak Jin Bae*, Minkook Kim*, Soon Ho Yoon*, Eunho Kim**† , Jaesang Yu*†

  • * Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeollabukdo, Korea
    ** Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea

  • 유한요소해석을 이용한 복합재료 압력용기 실린더의 적층 설계에 따른 충격 손상 및 내압성능 분석
  • 박경민*, ** · 오유나* · 배곽진* · 김민국* · 윤순호* · 김은호**† · 유재상*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Usman, M. R., “Hydrogen storage methods: Review and current status,” Renewable & Sustainable Energy Reviews, Vol. 167, 2022.
  •  
  • 2. Durbin, D. J., and Malardier-Jugroot, C., “Review of hydrogen storage techniques for on board vehicle applications,” International Journal of Hydrogen Energy, Vol. 38, No. 34, 2013, pp. 14595-14617.
  •  
  • 3. Air, A., Shamsuddoha, M., and Prusty, B. G., “A review of Type V composite pressure vessels and automated fibre placement based manufacturing,” Composites Part B-Engineering, Vol. 253, 2023.
  •  
  • 4. Moradi, R., and Groth, K. M., “Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis,” International Journal of Hydrogen Energy, Vol. 44, No. 23, 2019, pp. 12254-12269.
  •  
  • 5. Hassan, I. A., Ramadan, H. S., Saleh, M. A., and Hissel, D., “Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives,” Renewable & Sustainable Energy Reviews, Vol. 149, 2021.
  •  
  • 6. Icardi, U., Locatto, S., and Longo, A., “Assessment of recent theories for predicting failure of composite laminates,” Applied Mechanics Reviews, Vol. 60, No. 1-6, 2007, pp. 76-86.
  •  
  • 7. Ha, S. C., Kim, I. G., Lee, S. J., Cho, S. G., Jang, M. H., and Choi, I. H., “Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact,” Composites Research, Vol. 22, No. 6, 2009, pp. 18-22.
  •  
  • 8. Tan, R. M., Guan, Z. D., Sun, W., Liu, Z., and Xu, J. F., “Experiment investigation on impact damage and influences on compression behaviors of single T-stiffened composite panels,” Composite Structures, Vol. 203, 2018, pp. 486-497.
  •  
  • 9. Sultan, M. T. H., Hodzic, A., Staszewski, W. J., and Worden, K., “A SEM-Based Study of Structural Impact Damage,” Advances in Experimental Mechanics Vii, Vol. 24-25, 2010, pp. 233-238.
  •  
  • 10. Lloyd, B., and Knight, G., “Impact damage sensitivity of filament-wound composite pressure vessels,” Johns Hopkins Univ., The 1986 JANNAF Propulsion Meeting, Vol. 1, 1986.
  •  
  • 11. Demir, I., Sayman, O., Dogan, A., Arikan, V., and Arman, Y., “The effects of repeated transverse impact load on the burst pressure of composite pressure vessel,” Composites Part B-Engineering, Vol. 68, 2015, pp. 121-125.
  •  
  • 12. Perillo, G., Grytten, F., Sorbo, S., and Delhaye, V., “Numerical/experimental impact events on filament wound composite pressure vessel,” Composites Part B-Engineering, Vol. 69, 2015, pp. 406-417.
  •  
  • 13. Weerts, R. A. J., Cousigné, O., Kunze, K., Geers, M. G. D., and Remmers, J. J. C., “A methodological approach to model composite overwrapped pressure vessels under impact conditions,” Composite Structures, Vol. 276, 2021.
  •  
  • 14. Liao, B. B., and Jia, L. Y., “Finite element analysis of dynamic responses of composite pressure vessels under low velocity impact by using a three-dimensional laminated media model,” Thin-Walled Structures, Vol. 129, 2018, pp. 488-501.
  •  
  • 15. Kim, E. H., Lee, I., and Hwang, T. K., “Low-Velocity Impact and Residual Burst-Pressure Analysis of Cylindrical Composite Pressure Vessels,” Aiaa Journal, Vol. 50, No. 10, 2012, pp. 2180-2193.
  •  
  • 16. Kim, E. H., Rim, M. S., Lee, I., and Hwang, T. K., “Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates,” Composite Structures, Vol. 95, 2013, pp. 123-134.
  •  
  • 17. Sommer, D. E., Thomson, D., Falco, O., Quino, G., Cui, H., and Petrinic, N., “Damage modelling of carbon fibre composite crush tubes: Numerical simulation and experimental validation of drop weight impact,” Composites Part a-Applied Science and Manufacturing, Vol. 160, 2022.
  •  
  • 18. Hashin, Z., “Failure Criteria for Unidirectional Fiber Composites,” Journal of Applied Mechanics-Transactions of the Asme, Vol. 47, No. 2, 1980, pp. 329-334.
  •  
  • 19. Simulia ABAQUS 6.14 documentation, http://130.149.89.49: 2080/v6.14/
  •  
  • 20. Falzon, B.G., and Apruzzese, P., “Numerical analysis of intralaminar failure mechanisms in composite structures. Part II: Applications,” Composite Structures, Vol. 93, 2011, pp. 1047-1053.
  •  
  • 21. Nebe, M., Soriano, A., Braun, C., Middendorf, P., and Walther, F., “Analysis on the mechanical response of composite pressure vessels during internal pressure loading: FE modeling and experimental correlation,” Composites Part B-Engineering, Vol. 212, 2021.
  •  

This Article

Correspondence to

  • Eunho Kim
  • Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeollabukdo, Korea

  • E-mail: jamesyu@kist.re.kr