Original Article
  • Preparation of Polyimide-coated Polyurethane foam for Improved Flame Retardancy
  • Haeun Shin*, Ho-Bin Seo*, Hyeon-Woo Park*, Nam-Ho You*†

  • * Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju 55324, Republic of Korea

  • 난연성 향상을 위한 폴리이미드 코팅 폴리우레탄 폼의 제조
  • 신하은* · 서호빈* · 박현우* · 유남호*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Sun, H., Wu, C., Shen, B., Zhang, X., Zhang, Y., and Huang, J., “Progress in the development and application of CaO-based adsorbents for CO2 capture—a review,” Materials Today Sustainability, Vol. 1, 2018, pp. 1-27.
  •  
  • 2. Raupach, M.R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J.G., Klepper, G., and Field, C.B., “Global and regional drivers of accelerating CO2 emissions,” Proceedings of the National Academy of Sciences, Vol. 104, No. 24, 2007, pp. 10288-10293.
  •  
  • 3. Deng, K., Wang, S., Ren, S., Han, D., Xiao, M., and Meng, Y., “A novel single-ion-conducting polymer electrolyte derived from CO2-based multifunctional polycarbonate,” ACS Applied Materials & Interfaces, Vol. 8, No. 49, 2016, pp. 33642-33648.
  •  
  • 4. Zhou, D., Zhou, R., Chen, C., Yee, W.-A., Kong, J., Ding, G., and Lu, X., “Non-volatile polymer electrolyte based on poly (propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices,” The Journal of Physical Chemistry B, Vol. 117, No. 25, 2013, pp. 7783-7789.
  •  
  • 5. Konieczynska, M.D., Lin, X., Zhang, H., and Grinstaff, M.W., “Synthesis of aliphatic poly(ether 1, 2-glycerol carbonate) s via copolymerization of CO2 with glycidyl ethers using a cobalt salen catalyst and study of a thermally stable solid polymer electrolyte,” ACS Macro Letters, Vol. 4, No. 5, 2015, pp. 533-537.
  •  
  • 6. Nakamura, M., and Tominaga, Y., “Utilization of carbon dioxide for polymer electrolytes [II]: Synthesis of alternating copolymers with glycidyl ethers as novel ion-conductive polymers,” Electrochimica Acta, Vol. 57, 2011, pp. 36-39.
  •  
  • 7. Tominaga, Y., Shimomura, T., and Nakamura, M., “Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes,” Polymer, Vol. 51, No. 19, 2010, pp. 4295-4298.
  •  
  • 8. Kimura, K., Matsumoto, H., Hassoun, J., Panero, S., Scrosati, B., and Tominaga, Y., “A quaternarypoly (ethylene carbonate)-lithium bis (trifluoromethanesulfonyl) imide-ionic liquid-silica fiber composite polymer electrolyte for lithium batteries,” Electrochimica Acta, Vol. 175, 2015, pp. 134-140.
  •  
  • 9. Grignard, B., Gennen, S., Jérôme, C., Kleij, A.W., and Detrembleur, C., “Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers,” Chemical Society Reviews, Vol. 48, No. 16, 2019, pp. 4466-4514.
  •  
  • 10. Li, Y., Tian, H., Zhang, J., Zou, W., Wang, H., Du, Z., and Zhang, C., “Fabrication and properties of rigid polyurethane nanocomposite foams with functional isocyanate modified graphene oxide,” Polymer Composites, Vol. 41, No. 12, 2020, pp. 5126-5134.
  •  
  • 11. Wu, S., Deng, D., Zhou, L., Zhang, P., and Tang, G., “Flame retardancy and thermal degradation of rigid polyurethane foams composites based on aluminum hypophosphite,” Materials Research Express, Vol. 6, No. 10, 2019, pp. 105365.
  •  
  • 12. Jia, D., Guo, X., He, J., and Yang, R., “An anti-melt dripping, high char yield and flame-retardant polyether rigid polyurethane foam,” Polymer Degradation and Stability, Vol. 167, 2019, pp. 189-200.
  •  
  • 13. Zhu, M., Ma, Z., Liu, L., Zhang, J., Huo, S., and Song, P., “Recent advances in fire-retardant rigid polyurethane foam,” Journal of Materials Science & Technology, 2021.
  •  
  • 14. Wu, N., Niu, F., Lang, W., Yu, J., and Fu, G., “Synthesis of reactive phenylphosphoryl glycol ether oligomer and improved flame retardancy and mechanical property of modified rigid polyurethane foams,” Materials & Design, Vol. 181, 2019, pp. 107929.
  •  
  • 15. Yuan, Y., Yang, H., Yu, B., Shi, Y., Wang, W., Song, L., Hu, Y., and Zhang, Y., “Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites,” Industrial & Engineering Chemistry Research, Vol. 55, No. 41, 2016, pp. 10813-10822.
  •  
  • 16. Yang, H., Shi, B., Xue, Y., Ma, Z., Liu, L., Liu, L., Yu, Y., Zhang, Z., Annamalai, P.K., and Song, P., “Molecularly engineered lignin-derived additives enable fire-retardant, UV-shielding, and mechanically strong polylactide biocomposites,” Biomacromolecules, Vol. 22, No. 4, 2021, pp. 1432-1444.
  •  
  • 17. Xue, Y., Shen, M., Zheng, Y., Tao, W., Han, Y., Li, W., Song, P., and Wang, H., “One-pot scalable fabrication of an oligomeric phosphoramide towards high-performance flame retardant polylactic acid with a submicron-grained structure,” Composites Part B: Engineering, Vol. 183, 2020, pp. 107695.
  •  
  • 18. Bellayer, S., Jimenez, M., Prieur, B., Dewailly, B., Ramgobin, A., Sarazin, J., Revel, B., Tricot, G., and Bourbigot, S., “Fire retardant sol-gel coated polyurethane foam: Mechanism of action,” Polymer Degradation and Stability, Vol. 147, 2018, pp. 159-167.
  •  
  • 19. Bhoyate, S., Ionescu, M., Kahol, P., Chen, J., Mishra, S., and Gupta, R.K., “Highly flame‐retardant polyurethane foam based on reactive phosphorus polyol and limonene‐based polyol,” Journal of Applied Polymer Science, Vol. 135, No. 21, 2018, pp. 46224.
  •  
  • 20. Chen, S., Li, X., Li, Y., and Sun, J., “Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric,” ACS Nano, Vol. 9, No. 4, 2015, pp. 4070-4076.
  •  
  • 21. Liang, S., Neisius, N.M., and Gaan, S., “Recent developments in flame retardant polymeric coatings,” Progress in Organic Coatings, Vol. 76, No. 11, 2013, pp. 1642-1665.
  •  
  • 22. Peng, H.-K., Wang, X.X., Li, T.-T., Huang, S.-Y., Lin, Q., Shiu, B.-C., Lou, C.-W., and Lin, J.-H., “Effects of hydrotalcite on rigid polyurethane foam composites containing a fire retarding agent: compressive stress, combustion resistance, sound absorption, and electromagnetic shielding effectiveness,” RSC Advances, Vol. 8, No. 58, 2018, pp. 33542-33550.
  •  
  • 23. Huang, Y., Jiang, S., Liang, R., Liao, Z., and You, G., “A green highly-effective surface flame-retardant strategy for rigid polyurethane foam: Transforming UV-cured coating into intumescent self-extinguishing layer,” Composites Part A: Applied Science and Manufacturing, Vol. 125, 2019, pp. 105534.
  •  
  • 24. Huang, S., Wang, L., Li, Y., Liang, C., and Zhang, J., “Novel Ti3C2Tx MXene/epoxy intumescent fire‐retardant coatings for ancient wooden architectures,” Journal of Applied Polymer Science, Vol. 138, No. 27, 2021, pp. 50649.
  •  
  • 25. Nam, K.-H., Jin, J.-U., Lee, D.H., Han, H., Goh, M., Yu, J., Ku, B.-C., and You, N.-H., “Towards solution-processable, thermally robust, transparent polyimide-chain-end tethered organosilicate nanohybrids,” Composites Part B: Engineering, Vol. 163, 2019, pp. 290-296.
  •  
  • 26. Kim, H., Ku, B.-C., Goh, M., Yeo, H., Ko, H.C., and You, N.-H., “Synthesis and characterization of phosphorus-and sulfur-containing aromatic polyimides for high refractive index,” Polymer, Vol. 136, 2018, pp. 143-148.
  •  
  • 27. Chen, L., Xu, Z., Wang, F., Duan, G., Xu, W., Zhang, G., Yang, H., Liu, J., and Jiang, S., “A flame-retardant and transparent wood/polyimide composite with excellent mechanical strength,” Composites Communications, Vol. 20, 2020, pp. 100355.
  •  
  • 28. Wang, N.-N., Wang, H., Wang, Y.-Y., Wei, Y.-H., Si, J.-Y., Yuen, A.C.Y., Xie, J.-S., Yu, B., Zhu, S.-E., and Lu, H.-D., “Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation,” ACS Applied Materials & Interfaces, Vol. 11, No. 43, 2019, pp. 40512-40523.
  •  
  • 29. Zhang, Z., Wang, X., Zu, G., Kanamori, K., Nakanishi, K., and Shen, J., “Resilient, fire-retardant and mechanically strong polyimide-polyvinylpolymethylsiloxane composite aerogel prepared via stepwise chemical liquid deposition,” Materials & Design, Vol. 183, 2019, pp. 108096.
  •  
  • 30. Wang, S., Wang, X., Wang, X., Li, H., Sun, J., Sun, W., Yao, Y., Gu, X., and Zhang, S., “Surface coated rigid polyurethane foam with durable flame retardancy and improved mechanical property,” Chemical Engineering Journal, Vol. 385, 2020, pp. 123755.
  •  
  • 31. Jung, H., Bae, K.J., Jin, J.-U., Oh, Y., Hong, H., Youn, S.J., You, N.-H., and Yu, J., “The effect of aqueous polyimide sizing agent on PEEK based carbon fiber composites using experimental techniques and molecular dynamics simulations,” Functional Composites and Structures, Vol. 2, No. 2, 2020, pp. 025001.
  •  
  • 32. Motokucho, S., Sudo, A., Sanda, F., and Endo, T., “Reaction of carbon dioxide with glycidol: The synthesis of a novel hyperbranched oligomer with a carbonate main chain with a hydroxyl terminal,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 42, No. 10, 2004, pp. 2506-2511.
  •  
  • 33. Coste, G., Denis, M., Sonnier, R., Caillol, S., and Negrell, C., “Synthesis of reactive phosphorus-based carbonate for flame retardant polyhydroxyurethane foams,” Polymer Degradation and Stability, Vol. 202, 2022, pp. 110031.
  •  
  • 34. Yue, X., Li, C., Ni, Y., Xu, Y., and Wang, J., “Flame retardant nanocomposites based on 2D layered nanomaterials: a review,” Journal of Materials Science, Vol. 54, No. 20, 2019, pp. 13070-13105.
  •  
  • 35. Zhu, M., Ma, Z., Liu, L., Zhang, J., Huo, S., and Song, P., “Recent advances in fire-retardant rigid polyurethane foam,” Journal of Materials Science & Technology, Vol. 112, 2022, pp. 315-328.
  •  
  • 36. Ma, C., Qiu, S., Wang, J., Sheng, H., Zhang, Y., Hu, W., and Hu, Y., “Facile synthesis of a novel hyperbranched poly (urethane-phosphine oxide) as an effective modifier for epoxy resin,” Polymer Degradation and Stability, Vol. 154, 2018, pp. 157-169.
  •  
  • 37. Qian, L., Li, L., Chen, Y., Xu, B., and Qiu, Y., “Quickly self-extinguishing flame retardant behavior of rigid polyurethane foams linked with phosphaphenanthrene groups,” Composites Part B: Engineering, Vol. 175, 2019, pp. 107186.
  •  

This Article

Correspondence to

  • Nam-Ho You
  • Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju 55324, Republic of Korea

  • E-mail: polymer@kist.re.kr