Special Issue
  • Effect of Particle Size on the Thermal and Mechanical Properties of cBN-Reinforced Aluminum Matrix Composites
  • Dawoon Jung*, **, Minsu Kim*, Taeho Lee*, **, Hyeonjae Park*, **, Junghwan Kim*, Sang-Bok Lee*, Sang-Kwan Lee*, Yangdo Kim**, Seungchan Cho*†

  • * Composites Research Division, Korea Institute of Materials Science, Changwon, Korea
    ** School of Materials Science and Engineering, Pusan National University, Busan, Korea

  • cBN 입자 크기에 따른 알루미늄 복합재료의 열적 및 기계적 특성 연구
  • 정다운*, ** · 김민수* · 이태호*, ** · 박현재*, ** · 김정환* · 이상복* · 이상관* · 김양도** · 조승찬*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Shen, Y.-L., Needleman, A., and Suresh, S., “Coefficients of Thermal Expansion of Metal-Matrix Composites for Electronic Packaging,” Metallurgical and Materials Transactions A, Vol. 25, No. 4, 1994, pp. 839–850.
  •  
  • 2. Baig, M. M. A., Hassan, S. F., Saheb, N., and Patel, F., “Metal Matrix Composite in Heat Sink Application: Reinforcement, Processing, and Properties,” Materials, Vol. 14, No. 19, 2021, 6257.
  •  
  • 3. Tan, Z., Chen, Z., Fan, G., Ji, G., Zhang, J., Xu, R., Shan, A., Li, Z., and Zhang, D., “Effect of Particle Size on the Thermal and Mechanical Properties of Aluminum Composites Reinforced with SiC and Diamond,” Materials & Design, Vol. 90, 2016, pp. 845–851.
  •  
  • 4. Abbas, A., and Wang, C.-C., “Augmentation of Natural Convection Heat Sink via Using Displacement Design,” International Journal of Heat and Mass Transfer, Vol. 154, 2020, 119757.
  •  
  • 5. Che, Z., Li, J., Wang, Q., Wang, L., Zhang, H., Zhang, Y., Wang, X., Wang, J., and Kim, M. J., “The Formation of Atomic-Level Interfacial Layer and Its Effect on Thermal Conductivity of W-Coated Diamond Particles Reinforced Al Matrix Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 107, 2018, pp. 164–170.
  •  
  • 6. Che, Q. L., Chen, X. K., Ji, Y. Q., Li, Y. W., Wang, L. X., Cao, S. Z., Jiang, Y. G., and Wang, Z., “The Influence of Minor Titanium Addition on Thermal Properties of Diamond/Copper Composites via In Situ Reactive Sintering,” Materials Science in Semiconductor Processing, Vol. 30, 2015, pp. 104–111.
  •  
  • 7. Yun, H., Zou, B., Wang, J., Huang, C., Xing, H., Shi, Z., and Xue, K., “Design and Fabrication of Graded cBN Tool Materials Through High Temperature High Pressure Method,” Journal of Alloys and Compounds, Vol. 832, 2020, 154937.
  •  
  • 8. Rong, X. Z., and Yano, T., “TEM Investigation of High-Pressure Reaction-Sintered cBN–Al Composites,” Journal of Materials Science, Vol. 39, 2004, pp. 4705–4710.
  •  
  • 9. McKie, A., Winzer, J., Sigalas, I., Herrmann, M., Weiler, L., Rödel, J., and Can, N., “Mechanical Properties of cBN–Al Composite Materials,” Ceramics International, Vol. 37, 2011, pp. 1–8.
  •  
  • 10. Mizuuchi, K., Inoue, K., Agari, Y., Tanaka, M., Takeuchi, T., Tani, J., Kawahara, M., Makino, Y., and Ito, M., “Thermal Conductivity of Cubic Boron Nitride (cBN) Particle Dispersed Al Matrix Composites Fabricated by SPS,” Materials Science Forum, Vol. 879, 2017, pp. 2413–2418.
  •  
  • 11. Yoshii, K., and Totani, T., “Thermal Effects of Aluminum–Copper–Aluminum Clad Material for the Utilization of the Entire Heat Capacity of Microsatellites,” Journal of Evolving Space Activities, Vol. 1, 2023, 84.
  •  
  • 12. Fleck, N. A., and Hutchinson, J. W., “A Phenomenological Theory for Strain Gradient Effects in Plasticity,” Journal of the Mechanics and Physics of Solids, Vol. 41, No. 12, 1993, pp. 1825–1857.
  •  
  • 13. Chen, S. H., and Wang, T. C., “Size Effects in the Particle-Reinforced Metal-Matrix Composites,” Acta Mechanica, Vol. 157, 2002, pp. 113–127.
  •  
  • 14. Yan, Y. W., and Geng, L., “Effects of Particle Size on the Thermal Expansion Behavior of SiCp/Al Composites,” Journal of Materials Science, Vol. 42, 2007, pp. 6433–6438.
  •  
  • 15. Shah, G. O., and Arora, G., “Analyzing Thermal Conductivity of Composites Through Different Theoretical Frameworks,” EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, No. 3, 2024, pp. 1740–1752.
  •  
  • 16. Ouyang, D. L., Wang, Z. R., Yang, T., Zhang, L. W., Wu, D., Chen, W. F., Hu, Q., and Guo, S., “Cold Sprayed Cu/Invar Alloy Composite,” Journal of Materials Research and Technology, Vol. 34, 2025, pp. 2673–2683.
  •  
  • 17. Every, A. G., Tzou, Y., Hasselman, D. P. H., and Raj, R., “The Effect of Particle Size on the Thermal Conductivity of ZnS/Diamond Composites,” Acta Metallurgica et Materialia, Vol. 40, No. 1, 1992, pp. 123–129.
  •  

This Article

Correspondence to

  • Seungchan Cho
  • Composites Research Division, Korea Institute of Materials Science, Changwon, Korea

  • E-mail: sccho@kims.re.kr