Special Issue
  • Wrinkling Conductive Films Based on Vertical Graphene for Stretchable Strain Sensors
  • Hyojung Yong*, Hyeon-Jong Lee**, Ji Won Suk***†

  • * Department of Smart Fab. Technology, Sungkyunkwan University
    ** School of Mechanical Engineering, Sungkyunkwan University
    *** School of Mechanical Engineering, Department of Smart Fab. Technology, SKKU Advanced Institute of Nano Technology(SAINT), Sungkyunkwan University

  • 신축성 스트레인 센서를 위한 수직그래핀 기반 전도성 필름의 주름 구조 생성
  • 용효중* · 이현종** · 석지원***†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Souri, H, Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A.A., Park, I.K., “Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications,” Advanced Intelligent Systems, Vol. 2, No. 8, 2020, 2000039.
  •  
  • 2. Amjadi, M., Kyung, K.U. Park, I.K., Sitti, M., “Stretchable, Skin-mountable, and Wearable Strain Sensors and Their Potential Applications: A Review,” Advanced Functional Materials, Vol. 26, No. 11, 2016, pp. 1678-1698.
  •  
  • 3. Zhou, Y., Zhan, P., Ren, M., Zheng, G., Dai, K., Mi, L., Liu, C., Shen, C., “Significant Stretchability Enhancement of a Crack-based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring,” ACS Applied Materials & Interfaces, Vol. 11, No. 7, 2019, pp. 7405-7414.
  •  
  • 4. Pu, J.H., Zhao, X, Zha, X.J., Li, W.D., Ke, K., Bao, R.Y., Liu, Z.Y., Yang, M.B., Yang, W., “A Strain Localization Directed Crack Control Strategy for Designing MXene-based Customizable Sensitivity and Sensing Range Strain Sensors for Full-range Human Motion Monitoring,” Nano Energy, Vol. 74, 2020, 104814.
  •  
  • 5. Wang, Y., Qin, W., Hu, X., Liu, Z., Ren, Z., Cao, H., An, B., Zhou, X., Shafiq, M., Yin, S., Liu, Z., “Hierarchically Buckled Ti3C2Tx MXene/carbon Nanotubes Strain Sensor with Improved Linearity, Sensitivity, and Strain Range for Soft Robotics and Epidermal Monitoring,” Sensors and Actuators B : Chemical, Vol. 368, 2022, 132228.
  •  
  • 6. Yang, C., Huang, W., Lin, Y., Cao, S., Wang, H., Sun, Y., Fang, T., Wang, M., Kong, D., “Stretchable MXene/Carbon Nanotube Bilayer Strain Sensors with Tunable Sensitivity and Working Ranges,” ACS Applied Materials & Interfaces, Vol. 16, No. 23, 2024, pp. 30274-30283.
  •  
  • 7. Wang, Y., Wang, L., Yang, T., Li, X., Zang, X., Zhu, M., Wang, K., Wu, D., Zhu, H., “Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring,” Advanced Functional Materials, Vol. 24, No. 29, 2014, pp. 4666-4670.
  •  
  • 8. Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, 1991, pp. 56-58.
  •  
  • 9. Popov, V.N., “Carbon Nanotubes: Properties and Application,” Materials Science and Engineering: R: Reports, Vol. 43, No. 3, 2004, pp. 61-102.
  •  
  • 10. Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J., “Carbon Nanotubes: Present and Future Commercial Applications,” Science, Vol. 339, No. 6119, 2013, pp. 535-539.
  •  
  • 11. Nataraj, S.K., Yang, K.S., Aminabhavi, T.M., “Polyacrylonitrile-based Nanofibers—A State-of-the-art Review,” Progress in Polymer Science, Vol. 37, No. 3, 2012, pp. 487-513.
  •  
  • 12. Inagaki, M., Yang, Y., Kang, F., “Carbon Nanofibers Prepared via Electrospinning,” Advanced Materials, Vol. 24, No. 19, 2012, pp. 2547-2566.
  •  
  • 13. Kim, M.I., Lim, T.G., Shin, S.H., Suk, J.W., “Synthesis of 1T/2H-MoS2 Nanosheets on Dome-shaped CoS2 Particles Embedded in carbon Nanofibers as Free-standing Electrodes for Alkaline Water Splitting,” Journal of the Taiwan Institute of Chemical Engineers, 2025, 106260.
  •  
  • 14. Lim, T.G., Seo, B.H., Kim, S.J., Han, S.W., Lee, W.Y., Suk, J.W., “Nitrogen-Doped Activated Hollow Carbon Nanofibers with Controlled Hierarchical Pore Structures for High-Performance, Binder-Free, Flexible Supercapacitor Electrodes,” ACS Omega, Vo1. 9, No. 7, 2024, pp. 8247–8254.
  •  
  • 15. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Advanced Materials, Vol. 22, No. 35, 2010, pp. 3906-3924.
  •  
  • 16. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang Y., Dubonos S.V., Grigorieva, I.V., Firsov, A.A., “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669.
  •  
  • 17. Lee, H.J., Na, S.C., Lim, T.G., Yun, J.M., Megra, Y.T., Oh, J.H., Jeong, W.Y., Lim, D.Y., Suk, J.W., “Vertical Graphene-decorated Carbon Nanofibers Establishing Robust Conductive Networks for Fiber-based Stretchable Strain Sensors,” Journal of Materials Science & Technology, Vol. 200, 2024, pp. 52-60.
  •  
  • 18. Lim, S.M., Kim, H.M., Kim, S.G., Kim, H.K., Suk, J.W., “Highly Air Stable Graphene p–n Junctions Encapsulated by Atomic Layer Deposition for Flexible and Transparent Wearable Temperature Sensors,” Journal of Materials Science & Technology, Vol. 233, 2025, pp. 104-112.
  •  
  • 19. Suk, J.W., Piner, R.D., An, J.H., Ruoff, R.S., “Mechanical Properties of Monolayer Graphene Oxide,” ACS Nano, Vol. 4, No. 11, 2010, pp. 6557-6564.
  •  
  • 20. Suk, J.W., Mancevski, V., Hao, Y., Liechti, K.M., Ruoff, R.S., “Fracture of Polycrystalline Graphene Membranes by in situ Nanoindentation in a Scanning Electron Microscope,” Physica Status Solidi-Rapid Research Letters, Vol. 9, No. 10, 2015, pp. 564-569.
  •  
  • 21. Suk, J.W., Hao, Y., Liechti, K.M., Ruoff, R.S., “Impact of Grain Boundaries on the Elastic Behavior of Transferred Polycrystalline Graphene,” Chemistry of Materials, Vol. 32, No. 14, 2020, pp. 6078–6084.
  •  
  • 22. Suk, J.W., Lee, W.H., Lee, J.H., Chou, H., Piner, R.D., Hao, Y., Akinwande, D., Ruoff, R.S., “Enhancement of the Electrical Properties of Graphene Grown by Chemical Vapor Deposition via Controlling the Effects of Polymer Residue,” Nano Letters, Vol. 13, No. 4, 2013, pp. 1462-1467.
  •  
  • 23. Lim, S.M., Park, H.S., Yamamoto, G., Lee, C.G., Suk, J.W., “Measurements of the Electrical Conductivity of Monolayer Graphene Flakes Using Conductive Atomic Force Microscopy,” Nanomaterials, Vol. 11, 2021, 2575.
  •  
  • 24. Lim, T.G., Ho, B.T., Suk, J.W., “High-performance and Thermostable Wire Supercapacitors Using Mesoporous Activated Graphene Deposited on Continuous Multilayer Graphene,” Journal of Materials Chemistry A, Vol. 9, 2021, pp. 4800-4809.
  •  
  • 25. Vo, T.T., Lee, H.J., Kim, S.Y., Suk, J.W., “Synergistic Effect of Graphene/Silver Nanowire Hybrid Fillers on Highly Stretchable Strain Sensors Based on Spandex Composites,” Nanomaterials, Vol. 10, 2020, 2063.
  •  
  • 26. Na, S.C., Lee, H.J., Lim, T.G., Yun, J.M., Suk, J.W., “Stretchable Strain Sensors Using 3D Printed Polymer Structures Coated with Graphene/Carbon Nanofiber Hybrids,” Composites Research, Vol. 35, 2022, pp. 283-287.
  •  
  • 27. Cho, S.H., Lim, T.G., Lee, H.J., Kim, S.Y., Suk, J.W., “Multifunctional Wrinkled Nacreous All-carbon Films for High-performance Stretchable Strain Sensors and Supercapacitors,” Journal of Materials Chemistry A, Vol. 12, 2024, pp. 26718-26727.
  •  
  • 28. Huang, J., Zhou, J. Luo, Y., Yan, G., Liu, Y. Shen, Y., Xu, Y., Li, H, Yan, L., Zhang, G., Fu, Y., Duan, H., “Wrinkle-Enabled Highly Stretchable Strain Sensors for Wide-Range Health Monitoring with a Big Data Cloud Platform,” ACS Applied Materials & Interfaces, Vol. 12, No. 38, 2020, pp. 43009-43017.
  •  
  • 29. Kim, S.Y., Jeong, M.H., Suk, J.W., “Wrinkling of Graphene Papers Placed on Stretchable Adhesive Films,” Composites Research, Vol. 34, No. 2, 2021, pp. 108-114.
  •  
  • 30. Lee, G.W., Zarei, M., Wei, Q., Zhu, Y., Lee, S.G., “Surface Wrinkling for Flexible and Stretchable Sensors,” Small, Vol. 18, No. 42, 2022, 2203491.
  •  
  • 31. Liu, D., Zhang, H., Chen, H., Lee, J.H., Guo, F., Shen, X., Zheng, Q., Kim, J.K., “Wrinkled, Cracked and Bridged Carbon Networks for Highly Sensitive and Stretchable Strain Sensors,” Composites Part A: Applied Science and Manufacturing, Vol. 163, 2022, 107221.
  •  
  • 32. Guo, H., Chu, Z., Fu, L., Lv, Y., Liu, X., Fan, X., Zhang, W., “Thickness-induced gradient micro-wrinkle PDMS/MXene/rGO Wearable Strain Sensor with High Sensitivity and Stretchability for Human Motion Detection,” Chemical Engineering Journal, Vol. 495, 2024, 153684.
  •  
  • 33. Zeng, J., Ji, X., Ma, Y., Zhang, Z., Wang, S., Ren, Z., Zhi, C., Yu, J., “3D Graphene Fibers Grown by Thermal Chemical Vapor Deposition,” Advanced Materials, Vol. 30, No. 12, 2018, 1705380.
  •  
  • 34. Lee, H.J., Na, S.C., Lim, T.G., Yun, J.M., Megra, Y.T., Oh, J.H., Jeong, W.Y., Lim, D.Y., Suk, J.W., “Double-layered Cracked Networks Using Vertical Graphene Grown on Carbon Nanofibers for Highly Stable Stretchable Strain Sensors,” Surfaces and Interfaces, Vol. 63, 2025, 106316.
  •  
  • 35. Rahaman, M.S.A., Ismail, A.F., Mustafa, A., “A Review of Heat Treatment on Polyacrylonitrile Fiber,” Polymer Degradation and Stability, Vol. 92, No. 8, 2007, pp. 1421-1432.
  •  
  • 36. Wu, S., Peng, S., Han, Z.J., Zhu, H., Wang, C.H., “Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network,” ACS Applied Materials & Interfaces, Vol. 10, No. 42, 2018, pp. 36312-36322.
  •  
  • 37. Chen, H., Lv, L., Zhang, J., Zhang, S., Xu, P., Li, C., Zhang, Z., Li, Y., Xu, Y., Wang, J., “Enhanced Stretchable and Sensitive Strain Sensor Via Controlled Strain Distribution,” Nanomaterials,Vol. 10, No. 2, 2020, 218.
  •  
  • 38. Zhang, B., Wang, W., Zhang, D., Li, T., Zhang, H., Du, C., Zhao, W., Yan, Y., “A Highly Sensitive and Stretchable Strain Sensor Based on a Wrinkled Chitosan-multiwall Carbon Nanotube Nanocomposite,” Journal of Materials Chemistry C, Vol. 9, 2021, pp. 14848-14857.
  •  

This Article

Correspondence to

  • Ji Won Suk
  • School of Mechanical Engineering, Department of Smart Fab. Technology, SKKU Advanced Institute of Nano Technology(SAINT), Sungkyunkwan University

  • E-mail: jwsuk@skku.edu