Special Issue
  • Effect of Acrylic Binder Content on the Physical Properties of Coconut-Based Activated Carbon Monoliths
  • Min Seong Han*, Byong Choi Bai*†

  • * Division of Energy Engineering, Daejin University

  • 아크릴계 바인더 함량이 야자계 활성탄소 모노리스의 물리적 특성에 미치는 영향
  • 한민성* · 배병철*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


References
  • 1. Shkolin, A. V., Fomkin, A. A., Men’shchikov, I. E., Strizhenov, E. M., Pulin, A. L., and Khozina, E. V., “Monolithic microporous carbon adsorbent for low-temperature natural gas storage,” Adsorption, Vol. 25, No. 8, 2019, pp. 1559-1573.
  •  
  • 2. Sanal, A., Bernama, A., Haris, F., and Ramadhan, I. T., “Preparation of activated carbon from waste plastics polyethylene terephthalate as adsorbent in natural gas storage,” IOP Conference Series: Materials Science and Engineering, Vol. 176, No. 1, 2017.
  •  
  • 3. Abdulsalam, J., Mulopo, J., Bada, S., and Oboirien, B., “Natural gas storage properties of adsorbents synthesised from three different coal waste in South Africa,” Fuel, Vol. 267, 2020, 117157.
  •  
  • 4. Strizhenov, E. M., Chugaev, S. S., Men’shchikov, I. E., Shkolin, A. V., and Zherdev, A. A., “Heat and mass transfer in an adsorbed natural gas storage system filled with monolithic carbon adsorbent during circulating gas charging,” Nanomaterials, Vol. 11, No. 12, 2021.
  •  
  • 5. Michaelis, E., Nie, R., Austin, D., and Yue, Y., “High surface area biocarbon monoliths for methane storage,” Green Energy & Environment, Vol. 8, No. 5, 2023, pp. 1308-1324.
  •  
  • 6. Kim, H. S., Kim, H. Y., and Jung, W. Y., “Preparation of paper from pitch-based activated carbon fibers and adsorption characteristics,” Composites Research, Vol. 29, No. 5, 2016, pp. 256-261.
  •  
  • 7. Wi, E., Phu, N. A. M. M., Kim, K., Yun, J. W., Huh, Y. I., and Chang, M., “Fabrication of Composite Activated Carbon Electrodes and Sodium Ion Removal by Capacitive Desalination Process,” Composites Research, Vol. 37, No. 4, 2024, pp. 356-362.
  •  
  • 8. Alves, A. T., Lasmar, D. J., de Andrade Miranda, I. P., da Silva Chaar, J., and dos Santos Reis, J., “The potential of activated carbon in the treatment of water for human consumption, a study of the state of the art and its techniques used for its development,” Advances in Bioscience and Biotechnology, Vol. 12, No. 6, 2021, pp. 143-153.
  •  
  • 9. Byamba-Ochir, N., Shim, W. G., Balathanigaimani, M. S., and Moon, H., “High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption,” Applied Energy, Vol. 190, 2017, pp. 257-265.
  •  
  • 10. Tang, S. H., and Zaini, M. A. A., “Development of activated carbon pellets using a facile low-cost binder for effective malachite green dye removal,” Journal of Cleaner Production, Vol. 253, 2020, 119970.
  •  
  • 11. Reljic, S., Cuadrado-Collados, C., Farrando Pérez, J., Jardim, E. D. O., Martinez-Escandell, M., and Silvestre-Albero, J., “Carbon-based monoliths with improved thermal and mechanical properties for methane storage,” Fuel, Vol. 324, 2022, 124753.
  •  
  • 12. Regufe, M. J., Ferreira, A. F., Loureiro, J. M., Shi, Y., Rodrigues, A., and Ribeiro, A. M., “New hybrid composite honeycomb monolith with 13X zeolite and activated carbon for CO2 capture,” Adsorption, Vol. 24, No. 3, 2018, pp. 249-265.
  •  
  • 13. Ren, Z., Guo, Y., and Gao, P. X., “Nano-array based monolithic catalysts: Concept, rational materials design and tunable catalytic performance,” Catalysis Today, Vol. 258, 2015, pp. 441-453.
  •  
  • 14. Gopinath, K. P., Vo, D. V. N., Gnana Prakash, D., Adithya Joseph, A., Viswanathan, S., and Arun, J., “Environmental applications of carbon-based materials: a review,” Environmental Chemistry Letters, Vol. 19, No. 1, 2021, pp. 557-582.
  •  
  • 15. Ntouros, V., Kousis, I., Pisello, A. L., and Assimakopoulos, M. N., “Binding materials for MOF monolith shaping processes: A review towards real life application,” Energies, Vol. 15, No. 4, 2022.
  •  
  • 16. Skoczko, I., and Guminski, R., “Research on the development of technologies for the production of granulated activated carbons using various binders,” Materials, Vol. 13, No. 22, 2020.
  •  
  • 17. Saeidi, N., and Lotfollahi, M. N., “A procedure to form powder activated carbon into activated carbon monolith,” The International Journal of Advanced Manufacturing Technology, Vol. 81, No. 5, 2015, pp. 1281-1288.
  •  
  • 18. Bahranifard, Z., Tabrizi, F. F., and Vosoughi, A. R., “An investigation on the effect of styrene-butyl acrylate copolymer latex to improve the properties of polymer modified concrete,” Construction and Building Materials, Vol. 205, 2019, pp. 175-185.
  •  
  • 19. Srivastava, M., MR, A. K., and Zaghib, K., “Binders for Li-ion battery technologies and beyond: a comprehensive review,” Batteries, Vol. 10, No. 8, 2024.
  •  
  • 20. Tan, C., Tirri, T., and Wilen, C. E., “The effect of core–shell particle morphology on adhesive properties of poly (styrene-co-butyl acrylate),” International Journal of Adhesion and Adhesives, Vol. 66, 2016, pp. 104-113.
  •  
  • 21. Zou, F., and Manthiram, A., “A review of the design of advanced binders for high‐performance batteries,” Advanced Energy Materials, Vol. 10, No. 45, 2020, 2002508.
  •  
  • 22. Kim, J. H., Hwang, H. I., and Im, J. S., “Optimization of the Filler-and-Binder Mixing Ratio for Enhanced Mechanical Strength of Carbon–Carbon Composites,” Materials, Vol. 16, No. 11, 2023.
  •  
  • 23. Abdelmonim, A., and Bompa, D. V., “Mechanical and fresh properties of multi-binder geopolymer mortars incorporating recycled rubber particles,” Infrastructures, Vol. 6, No. 10, 2021.
  •  
  • 24. Bao, J., Chu, M., Wang, H., Liu, Z., Han, D., Cao, L., Guo, J., and Zhao, Z., “Evolution characteristics and influence mechanism of binder addition on metallurgical properties of iron carbon agglomerates,” Metallurgical and Materials Transactions B, Vol. 51, No. 6, 2020, pp. 2785-2796.
  •  
  • 25. Lee, S., Gendensuren, B., Kim, B., Jeon, S., Cho, Y. H., Kim, T., and Oh, E. S., “Effect of emulsified polymer binders on the performance of activated carbon electrochemical double-layer capacitors,” Korean Journal of Chemical Engineering, Vol. 36, No. 11, 2019, pp. 1940-1947.
  •  
  • 26. Marco-Lozar, J. P., Kunowsky, M., Carruthers, J. D., and Linares-Solano, Á., “Gas storage scale-up at room temperature on high density carbon materials,” Carbon, Vol. 76, 2014, pp. 123-132.
  •  
  • 27. Kim, S. W., Sohn, J. S., Kim, H. K., Ryu, Y., and Cha, S. W., “Effects of gas adsorption on the mechanical properties of amorphous polymer,” Polymers, Vol. 11, No. 5, 2019.
  •  
  • 28. Ma, Y., Davis, H. T., and Scriven, L. E., “Microstructure development in drying latex coatings,” Progress in Organic Coatings, Vol. 52, No. 1, 2005, pp. 46-62.
  •  

This Article

Correspondence to

  • Byong Choi Bai
  • Division of Energy Engineering, Daejin University

  • E-mail: baibc0820@daejin.ac.kr