Special Issue
  • Effect of Reinforcement Particle Size on the Properties of Neutron-Absorbing High Thermal Conductivity Aluminum Matrix Composites
  • Eun-Seo Cho*, **, Min-Woo Kang*, Min-Su Kim*, Donghyun Lee*, Junghwan Kim*, Seungmun Jung***, Young-Bum Chun***, Sang-Bok Lee*, Yangdo Kim**, Seungchan Cho*†

  • * Composites & Convergence Materials Research Division, Korea Institute of Materials Science, Changwon, Korea
    ** School of Materials Science and Engineering, Pusan National University, Busan, Korea
    *** Materials Safety Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, Korea

  • 중성자 흡수 고열전도 알루미늄 복합재료의 강화재 입도별 물성 연구
  • 조은서*, ** · 강민우* · 김민수* · 이동현* · 김정환* · 정승문*** · 천영범*** · 이상복* · 김양도** · 조승찬*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


References
  • 1. Awad, M.M., Abdelgawad, M.H., Aboelezz, E., and Ereiba, K.T., “Biomarker dosimetry of acute low level of thermal neutrons and radiation adaptive response effect on rats,” Scientific Reports, Vol. 14, No. 1, 2024, pp. 18534.
  •  
  • 2. Kim, J., Lee, B.C., Uhm, Y.R., and Miller, W.H., “Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites,” Journal of Nuclear Materials, Vol. 453, No. 1, 2014, pp. 48-53.
  •  
  • 3. Shao, Q., Zhu, Q., Wang, Y., Kuang, S., Bao, J., and Liu, S., “Development and application analysis of high-energy neutron radiation shielding materials from tungsten boron polyethylene,” Nuclear Engineering and Technology, Vol. 56, No. 6, 2024, pp. 2153-2162.
  •  
  • 4. Gohel, A., and Makwana, R., “Multi-layered shielding materials for high energy space radiation,” Radiation Physics and Chemistry, Vol. 197, 2022, pp. 110131.
  •  
  • 5. Li, C., Li, C., Xia, X., Cai, J., Zhang, Z., Wang, J., Qian, Z., Wang, X., and Dai, Y., “Influence analysis of B4C content on the neutron shielding performance of B4C/Al,” Radiation Physics and Chemistry, Vol. 204, 2023, pp. 110684.
  •  
  • 6. Qu, Z., Yu, C., Wei, Y., Su, X., and Du, A., “Thermal conductivity of boron carbide under fast neutron irradiation,” Journal of Advanced Ceramics, Vol. 11, No. 3, 2022, pp. 482-494.
  •  
  • 7. Maruyama, T., Onose, S., Kaito, T., and Horiuch, H., “Effect of fast neutron irradiation on the properties of boron carbide pellet,” Journal of Nuclear Science and Technology, Vol. 34, No. 10, 1997, pp. 1006-1014.
  •  
  • 8. Yun, H., Zou, B., Wang, J., Huang, C., Xing, H., Shi, Z., and Xue, K., “Design and fabrication of graded cBN tool materials through high temperature high pressure method,” Journal of Alloys and Compounds, Vol. 832, 2020, pp. 154937.
  •  
  • 9. Bonnet, G.,Rohr, V., Chen, X. G., Bernier, J. L., Chiocca, R., and Issard, H., “Use of Alcan's Al-B4C metal matrix composites as neutron absorber material in TN International's transportation and storage casks,” Packaging, Transport, Storage and Security of Radioactive Material, Vol. 20, 2009, pp. 98-102.
  •  
  • 10. Kumar, A., Kosonowski, A., Wyzga, P., Wojciechowski, and K. T., “Effective thermal conductivity of SrBi4Ti4O15-La0.7Sr0.3MnO3 oxide composite: Role of particle size and interface thermal resistance,” Journal of the European Ceramic Society, Vol. 41, No. 1, 2021, pp. 451-458.
  •  
  • 11. Chen, L., Chen, S., and Hou, Y., “Understanding the thermal conductivity of Diamond/Copper composites by first-principles calculations,” Carbon, Vol. 148, 2019, pp. 249-257.
  •  
  • 12. Zhang, Y. Zhang, Y., Bai, G., Liu, X., Dai, J., Wang, X., and Zhang, H., “Reinforcement size effect on thermal conductivity in Cu-B/diamond composite,” Journal of Materials Science & Technology, Vol. 91, 2021, pp. 1-4.
  •  
  • 13. Rahimian, M., Parvin, N., and Ehsani, N., “Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy,” Materials Science and Engineering: A, Vol. 527, No. 4, 2010, pp. 1031-1038.
  •  
  • 14. Sun, C., Song, M., Wang, Z., and He, Y., “Effect of Particle Size on the Microstructures and Mechanical Properties of SiC-Reinforced Pure Aluminum Composites,” Journal of Materials Engineering and Performance, Vol. 20, No. 9, 2011, pp. 1606-1612.
  •  
  • 15. McDonald, R.A., “Enthalpy, heat capacity, and heat of fusion of aluminum from 366.degree. to 1647.degree.K,” Journal of Chemical and Engineering Data, Vol. 12, No. 1, 1967, pp. 115-118.
  •  
  • 16. Pakdel, A., Witecka, A., Rydzek, G., and Awang, S.D. Noorfazidah, “A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering,” Materials & Design, Vol. 119, 2017, pp. 225-234.
  •  
  • 17. Molina, J.-M., Alejandro R.-G., Louis, E., Francisco R.-R., and Narciso, J., “Porosity Effect on Thermal Properties of Al-12 wt.% Si/Graphite Composites,” Materials, Vol. 10, No. 2, 2017, pp. 177.
  •  
  • 18. Kim, J., Jun, J., and Lee, M.-K., “Particle size-dependent pulverization of B4C and generation of B4C/STS nanoparticles used for neutron absorbing composites,” Nuclear Engineering and Technology, Vol. 46, No. 5, 2014, pp. 675-680.
  •  

This Article

Correspondence to

  • Seungchan Cho
  • Composites & Convergence Materials Research Division, Korea Institute of Materials Science, Changwon, Korea

  • E-mail: sccho@kims.re.kr