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Experimental Characterization and Impact Analysis of
Strain-Rate-Dependent Behavior of Molded Pulp Material

Tae-Bae Kim*, Kyung-Jin Kim**, Il-Joo Chang*, Woo-Jong Kang**'

ABSTRACT: In this study, the material behavior of molded pulp, an environmentally friendly packaging material, was
experimentally characterized and numerically analyzed using the finite element method. To this end, quasi-static and
high strain-rate tensile tests, as well as quasi-static in-plane compression tests, were conducted. Based on the
experimental results, finite element analyses were performed using the MAT PLASTICITY_COMPRESSION_TENSION
material model in LS-DYNA. For the in-plane compression tests, a comb-type fixture was designed and fabricated to
suppress global buckling, enabling effective measurement of the in-plane compressive behavior. The molded pulp
material exhibited significantly different mechanical responses under tension and compression, and substantial
discrepancies were also observed between through-thickness compression and in-plane compression behaviors. In
addition, pronounced strain-rate effects were identified under both tensile and compressive loading conditions. These
material characteristics of molded pulp were effectively captured using the MAT PLASTICITY_COMPRESSION_
TENSION model. Furthermore, the numerical simulations showed good agreement with experimental impact test
results of molded pulp products.
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Low speed tensile test High speed tensile test Geometry of tensile specimen

Fig. 1. High strain rate test equipment for molded pulp materials
and the tensile specimen dimension
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Fig. 2. Elastic modulus and yield strength of molded pulp material
obtained from tensile tests at different strain rates
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Fig. 3. Effective stress—plastic strain curves of molded pulp
material with Swift-law fitting at various strain rates
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Fig. 4. Anti-buckling comb-type fixture designed for in-plane
compression testing of molded pulp specimens
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Fig. 5. Deformation of molded pulp specimen during in-plane
compression test showing suppressed global buckling

14.0

1/s
12.0
= 100
[=%
=
~ B0
w
@
e
2 60
g
w40
2.0
0.0
0.0 0.2 0.4 0.6 0.8 1.0
Eng. Strain
(a)

Elastic modulus(in-plane compressian] Vield strengthyin-plane compression|

a0

S1s

=1n

210

Foas
o

0oLl 0012 0013 11 12 12
Strain rate(/s) and test No.

Elastic Modulus(MPa)
sss8BESR

0011 0012 0013 11
Strain rate(/s] and test No.

(b) ()

Fig. 6. In-plane compressive stress—strain response and corre-
sponding elastic modulus and yield stress of molded
pulp material
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Fig.8. Comparison of in-plane compression and through-thickness
compression behaviors of molded pulp material
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Fig. 15. Deformed shapes and effective plastic strain distribu-
tion of a molded pulp specimen at the impact of 1 m/s:
(a) 1*timpact, (b) cumulative 2™ impact
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Fig. 16. Deformed shapes and effective plastic strain distribu-
tion of a molded pulp specimen at the impact of 2 m/s:
(a) 1*timpact, (b) cumulative 2™ impact
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