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AI 기반 시멘트 복합체의 균열 검출 및 이미지 프로세싱 최신 기술 동향

송승호*
 · 조상환*

 · 김민욱*
†

Recent Advances in AI-Based Crack Detection and Image Processing for 
Cementitious Composites

Seungho Song*, Sanghwan Cho*, Min Ook Kim*
†

ABSTRACT: Cementitious composites are key materials that determine the durability and safety of structures, and the
occurrence and propagation of cracks are major causes of their performance degradation. With recent advances in
high-resolution imaging technologies and artificial intelligence (AI), new approaches have emerged for quantitatively
evaluating and predicting the crack behavior of cementitious composites. This paper comprehensively reviews the
latest trends in image processing and AI-based analytical techniques applied to crack detection and assessment in
cementitious composites. Specifically, it systematically analyzes the evolution of methods from traditional image
analysis such as binarization, edge detection, and histogram analysis to deep learning-based approaches including
convolutional neural networks (CNN), vision transformers (ViT), and generative AI-based restoration techniques.
Furthermore, it discusses the potential integration of various sensing technologies such as optical and electron
microscopy for microstructural observation, drone/UAV imaging, and infrared or thermal imaging. Finally, this review
highlights key challenges related to dataset construction, training pipelines, performance metrics, and field
implementation for real-world structural monitoring. The study aims to provide a technological foundation for
intelligent maintenance and digital twin realization by proposing research directions for AI-based image interpretation
in the evaluation of cracks in cementitious composites.

초 록: 시멘트 기반 복합체(cementitious composites)는 토목 구조물의 내구성과 안전성을 결정하는 핵심 재료 중
하나로서, 균열(crack)의 발생 및 진전은 그 성능 저하의 주요 원인 중 하나이다. 최근 고해상도 영상 기술과 인공
지능(AI)의 발전으로 시멘트 복합체의 균열 거동을 정량적으로 평가하고 예측하는 새로운 접근이 가능해졌다. 본
논문에서는 시멘트 복합체의 균열 검출과 평가에 적용되는 이미지 프로세싱 및 AI 기반 분석 기술의 최신 동향
을 종합적으로 검토하였다. 구체적으로는 전통적인 영상분석(이진화, 에지 검출, 히스토그램 분석 등)에서부터 딥
러닝 기반의 CNN(Convolutional Neural Network), Vision Transformer(ViT), 그리고 생성형 AI 기반 복원 기법까지의
발전 과정을 체계적으로 분석하였다. 또한, 시멘트 복합체의 미세구조 관찰을 위한 광학·전자현미경 영상, 드론·
UAV 영상, 적외선·열화상 영상 등 다양한 센싱 기술과의 융합 가능성을 논의하였다. 마지막으로, 데이터셋 구축,
학습 파이프라인, 성능 지표 정립, 실제 구조물 모니터링으로의 적용 과제를 제시하였다. 본 연구는 AI 기반 영상
해석 기술을 활용한 시멘트 복합체 균열 평가의 연구 방향을 제시함으로써, 지능형 유지 관리 및 디지털 트윈 구
현을 위한 기술적 토대를 제공함을 목표로 한다.

Key Words: 시멘트 복합체(Cementitious composites), 균열 검출(Crack detection), 이미지 프로세싱(Image processing),
인공지능(AI), 딥러닝(Deep learning)
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1. 서 론

시멘트 기반 복합체는 토목 구조물의 주요 재료로서, 사
회 인프라의 안전성과 장기 내구성을 결정하는 데 중요한
역할을 한다. 그러나 이러한 재료는 경화 후 수축, 외부 하
중, 온·습도 변화, 화학적 침식 등의 다양한 원인에 기인하
여 균열이 발생할 수 있으며, 균열은 구조물의 강도 저하,
누수, 철근 부식, 그리고 장기적으로는 붕괴와 같은 심각한
손상을 유발할 수 있다. 과거에는 균열의 검출 및 평가를 주
로 육안관찰이나 단순 영상분석에 의존하였으나, 이러한
방법은 주관적이며 대규모 구조물의 실시간 평가에는 적
합하지 않다. 이에 따라 비파괴검사(NDT, Non-Destructive
Testing) 기술이 발전하여 초음파, 적외선, 지반투과레이더
(GPR) 등을 활용한 물리적 손상 평가가 시도되었지만, 이
역시 표면 상태나 환경 요인에 크게 영향을 받는 제한점이
존재한다[1,2]. 최근에는 영상처리(image processing)와 인
공지능(AI, Artificial Intelligence) 기술을 결합하여, 시멘트
복합체의 표면 및 내부 균열을 자동으로 검출하고, 그 폭
(width), 길이(length), 방향(angle), 성장속도(propagation
rate) 등을 정량적으로 분석하는 연구가 빠르게 확산되고
있다. 특히 딥러닝 기반의 시각인지 모델(CNN, ViT 등)은
기존 영상분석 대비 높은 재현성과 자동화를 가능하게 하
며, 균열 데이터의 대규모 처리 및 패턴 인식에도 뛰어난 성
능을 보이고 있다[3]. 이에 본 연구에서는 시멘트 복합체를
대상으로 한 균열 검출 및 영상 기반 분석 기술의 최근 연
구 동향을 종합적으로 고찰하고, AI 기술이 제공할 수 있는
분석적 이점과 향후 연구가 나아가야 할 방향을 제시한다.

2. 시멘트 복합체의 균열 거동 및 발생 메커니즘

2.1 시멘트 복합체의 균열 발생 및 확장

시멘트 복합체의 균열은 다양한 물리·화학적 요인에 의
해 발생한다. 초기 균열은 주로 건조수축(drying shrinkage)
이나 수화열(hydration heat)로 인한 체적 변화에서 기인하
며, 하중 작용 시에는 인장응력(tensile stress)을 수용하지 못
하는 재료 특성상 균열이 발생한다. 균열은 일반적으로 미
세균열(microcrack), 표면균열(surface crack), 진전균열
(propagating crack)의 세 단계로 구분된다. 미세균열은 현미
경 수준에서 발생하며 주로 수화생성물 내 미세기공 주변
에서 시작된다[4]. 표면균열은 육안으로 관찰 가능한 수준
의 손상으로, 피로하중이나 반복 동결융해 등에 의해 발생
하며, 진전균열은 구조물의 전체 안정성을 저해하는 주요
손상으로 이어진다[5,6]. 균열의 발생과 확장은 복합체 내
의 미세구조, 섬유 보강재의 분포, 결합계면(interfacial
transition zone, ITZ)의 품질에 따라 상이한 특성을 가지고
있다[7]. 따라서 균열을 정확히 검출하기 위해서는 재료적
요인과 구조적 요인을 동시에 고려해야 한다. 이러한 복합

적 요인을 정량적으로 분석하기 위해 영상 기반 접근은 매
우 유용하다. 예로, 광학 현미경(OM), 주사전자현미경(SEM),
그리고 X-ray CT 영상은 균열의 미세형상과 3차원적 분포
를 파악할 수 있는 수단을 제공한다[8-10]. Fig. 1은 대표적
으로 구조물 표면에 발생한 표면균열을 촬영 후, 이미지 프
로세싱을 통하여 분류한 모습을 도식화하였다[11]. 그러나
이러한 영상의 해석에는 고도의 데이터 처리 능력과 패턴
인식 기술이 요구되며, 이로 인해 인공지능 기반의 영상분
석이 새롭게 주목받고 있다.

2.2 시멘트 복합체의 수축 균열에 따른 메커니즘

시멘트 복합체는 수분의 이동에 따라, 건조 수축(dry
shrinkage), 크리프(creep)가 발생한다. 콘크리트의 경우, 수
분 분포가 불균일하고, 시간이 지날수록 수분 함량이 감소
하여 건조 수축 현상이 발생하는 기작을 가진다[12]. 수분
이 감소할수록, 구조물 내 가해지는 모세관 압력(capillary
pressure)이 커져, 구조물의 체적 변화가 발생하고 이는 동
결 융해, 부식을 비롯한 구조물의 내구성을 저하를 유발한
다[13]. 구조물에 가해지는 누적 하중이 증가할수록 시멘
트 복합체의 물리적 성질 변화에 따라 크리프가 발생한다
[14]. 크리프는 구조물의 처짐(deflection), 미세구조 재배열
을 비롯한 물리적 성질 변화의 주요 원인으로 보고된다[15].
이는 시멘트 복합체 내 수분 함량 감소할수록 그 거동이 커
지고, 수축 균열(shrinkage crack)을 유발하여 구조물의 인
장 저항성을 감소시킨다[16]. 시멘트 복합체의 재료적 성
질도 수축 균열 유발의 요인 중 하나다. 시멘트 페이스트의
경우, 다양한 기공 구조로 이루어져 있어 수분 이동의 불균
일이 발생하고, 잇따라 수축 균열이 발생한다[12]. 수분 함
량을 비롯한, 열적 요인도 시멘트 복합체에 건조수축을 유
발하는 주요 원인이다(Fig. 2) [17]. 수축 균열은 구조물의 물
리적 성능을 감소시켜, 균열의 파악과 예측에 관한 여러 논

Fig. 1. Illustration of data annotation and augmentation [11] 
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의가 진행 중이며, 인공지능 모델을 영상분석에 적용한 균
열 검출 연구가 진행 중이다.

3. 전통적 이미지 프로세싱 기법을 통한 균열 

검출

전통적인 이미지 프로세싱은 주로 영상의 명암, 색상, 질
감 정보를 기반으로 한 분석에 의존한다. 기본적으로 영상
내에서 균열은 주변 배경 대비 낮은 밝기 또는 특정 방향성
을 갖는 선형 객체로 나타나기 때문에, 에지 검출(edge
detection) 및 이진화(binarization) 기법이 주로 사용되었다
[18,19]. 대표적인 방법으로는 Sobel, Canny, Prewitt 등의 연
산자(operator)를 이용하여 명암 변화가 급격한 경계를 검
출하는 방식이 있다[20]. 또한 형태학적 연산(morphological
operation) 기법을 통해 균열의 폭과 길이를 추출하거나, 연
결성 분석을 통해 균열망(crack network)을 구성하는 방법
도 널리 활용되었다[21]. 이러한 방법은 비교적 계산이 간
단하고 해석이 명확하다는 장점이 있으나, 표면 반사나 그
림자, 콘크리트 표면의 거칠기(texture)에 민감하게 반응하
여 오검출(false detection)이 빈번히 발생하는 단점이 있다. 이
를 보완하기 위해 통계적 분류(SVM, K-means clustering)나
주성분 분석(PCA)을 활용한 특징기반(feature-based) 분류
가 시도되었지만, 여전히 대규모 데이터나 복잡한 표면 조
건에서는 적용이 어렵다는 한계가 존재한다[22]. 에지 검
출의 경우, 노이즈 문제(noise issue)를 해결하기 위해, 침투
기반 이미지 프로세싱이 등장하였다[23]. 그러나, 이는 길
이가 짧고, 크기가 작은 균열은 잘 검출하지 못하는 경향이
있다. 침투 기반 이미지 프로세싱(A percolation-based
technique of image processing)을 보완하기 위해, 하이브리
드 이진화 프로세싱(hybrid image processing)이 등장하였으
나, 마찬가지로 최적 매개변수 설정 등의 임계값 선정 문제
가 보고된 바 있다[24]. 따라서 이러한 전통적 기법은 주로
초기 데이터 전처리 단계에서 사용되며, 고차원 패턴 인식
은 인공지능 모델이 담당하는 방향으로 기술이 발전하고

있다[25]. 시멘트 복합체 표면에서 발생하는 균열은 크기
가 크고, 길이가 긴 특징을 가진다. 이에, 크기가 작고, 길이
가 짧은 균열은 검출하는데 한계를 가지는데, 매칭 알고리
즘(matching algorithm)을 적용하여 이러한 문제를 해결할
수 있다. 매칭 알고리즘은 학습 과정에서 추출한 이미지의
형태와 유사한 이미지를 선별한다[26]. 균열의 시각적 정
보에 따라 검사하는 에지 검출과 달리, 매칭 알고리즘은 여
러 크기와 형태의 이미지들을 학습하여, 검출하기 힘든 형
상의 데이터 또한 검출이 가능하다[27]. 균열의 존재를 파
악할 때, 정규화 과정은 균열 검출에 있어 매우 중요하다.
보통 이미지 속 균열이 존재하는 경우 1, 존재하지 않은 경
우 0으로 표현하는데, 여기서 균열 존재 유무에 대한 임계
값 설정 문제가 발생한다. 퍼지 알고리즘(fuzzy algorithm)
은 각 이미지마다 존재하는 균열 존재 유무 데이터를 추출
하여, 최적 매개변수(model parameter)를 계산하고 그에 따
른 임계 값을 산정한다[28]. 이는 새로운 데이터를 부여했
을 때도 적용 가능하며, 이미지 속 균열에 대한 기준을 산
정할 때 발생하는 문제를 방지할 수 있다[29].

Fig. 3은 이진화를 통해, 균열 이미지를 픽셀 단위로 나눈
후, 균열 부위에는 1, 균열이 아닌 배경에는 0을 할당하여, 균
열 부위만 추출한 모습을 도식화 하였다[30]. 또한, Fig. 4는
퍼지 알고리즘의 전체 아키텍처를 도식화한 것으로, Good,
Poor 등과 같은 평가 항목에 따라 가중치가 조정되는 과정
을 시각적으로 나타낸다[31].

4. 인공지능(AI) 기반 균열 검출 및 분석 기술의 

발전

딥러닝 기반의 AI 기술은 시멘트 복합체 균열 검출의 정
확도와 효율성을 획기적으로 향상시켰다. 대표적인 접근은
합성곱 신경망(Convolutional Neural Network, CNN)을 이용
한 영상 분류와 분할(Segmentation)이다[32]. 합성곱 신경망
은 영상 분류 알고리즘으로, 균열을 식별하는 과정에서 주

Fig. 2. Schematic of the thermal crack generation in concrete
[17] Fig. 3. Visualization of crack width based on image binarization

[30]
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로 사용한다[33]. 
합성곱 신경망의 커널은 균열의 질감, 패턴을 비롯한 형
태적 특징을 수치화한다[34]. 수치화한 데이터는 풀링에서
요약하고, 완전 연결 단계에서 하나로 종합하여, 균열 검출
에 관한 정보를 제시한다[35,36]. 그러나, 합성곱 신경망은
데이터가 증가할 경우, 처리 과정에서 시간 소요가 발생한
다. 이를 해결하기 위하여 이진 클래스 합성곱 신경망이 등
장하였다. 이진 클래스 합성곱 신경망은 기존 합성곱 신경
망과 달리, 맥스 풀링(max pooling)과 글로벌 맵 풀링(global
map pooling)을 사용하여 데이터를 요약한다. 맥스 풀링은
3*3 필터를 적용하여 균열 부위 위주로 데이터를 추출하
고, 글로벌 맵 풀링은 균열의 특징을 표현한 각 클래스의 평
균값을 제시한다[37]. VGG-16 또한, 3*3 커널을 통하여 알
고리즘의 계산 과정에 편의를 제공한다[38]. Fig. 5는 합성
곱 계층의 계산 과정을 도식화하였으며 픽셀 단위로 커널
을 적용하는 과정을 이해할 수 있다[39].

U-Net은 영상 분할 알고리즘으로, 균열의 윤곽선, 두께
를 비롯한 형태적 정보를 제공한다[40]. U-Net은 균열의 질
감, 패턴 등을 수치화 하는 점에서 합성곱 신경망과 유사하
나 축소 분할 과정 이후 데이터를 하나로 종합하는 합성곱
신경망과 상이하게, U-Net은 복원 과정을 거쳐, 픽셀마다
균열에 관한 정보를 표시한다[41]. 이때 축소 분할 과정을
인코더(encoder), 복원 과정을 디코더(decoder)라고 한다[42].
인코더에서 추출한 데이터를 토대로, 디코더에서 각 픽셀
마다 데이터를 부여하고, 이는 균열의 위치와 형태적 정보
를 제시한다[43]. Fig. 6은 U-Net을 통해 균열 분할 결과를
나타낸 이미지로, 왼쪽은 원본 이미지이고, 오른쪽은 분할

프로세스를 거친다[44].
또한, 객체 탐지 기반의 모델인 YOLO 시리즈나 Faster R-

CNN은 균열을 사각 영역(bounding box) 단위로 검출할 수
있어 현장 영상을 빠르게 처리하는 데 적합하다[45]. Faster
R-CNN은 객체 감지 알고리즘으로 합성곱 신경망에서 도
출한 균열의 질감, 패턴 수치를 토대로 균열의 특징을 추출
하는 백본 과정을 진행한다[46,47]. 그리고, 영역 제한 네트
워크(RPN)을 설정하여 균열의 존재 확률이 높은 위치에 후
보군을 선정하고, 앵커 조정과 데이터 타일링을 거쳐 균열
의 위치를 식별한다[48-50]. 관심 영역(RoI) 기법을 Faster R-
CNN의 도로 균열 감지 성능을 평가한 선행 연구에서는 정
확도 97.97%, 정밀도 99.12%, 재현율 97.25%를 달성했다고
보고한 바 있다[51]. 또한, 전이학습을 적용한 ME Faster R-
CNN과 동일한 매개변수를 사용한 Faster R-CNN의 감지 성
능을 비교한 결과, IdI와 mPA 값이 ME Faster R-CNN에서
각각 1.06%, 1.56% 증가한 선행 사례도 존재한다[52]. Retina
Net은 백본과 RPN을 거치는 점에서 Faster R-CNN과 유사
하나, FPN 과정을 추가적으로 진행하는 점에서 차이가 발
생한다[53]. FPN은 균열 위치와 존재 유무를 동시에 예측
하여, Retina Net의 헤드 과정에서 효과적인 균열 검출에 기
여한다[54]. 
최근 많이 사용하고 있는 객체 감지 알고리즘은 YOLO 시
리즈이다. YOLO는 백본 과정 이후, FPN과 PAN을 적용하
여 작은 균열에서 큰 균열까지 여러 크기의 균열을 동시에
추출한다[56,57]. 기존 균열 감지 알고리즘에 비해, 처리속
도가 현저히 상승하였으며, 균열의 존재, 위치 그리고 종류
를 동시에 검사할 수 있다[58,59]. 객체 감지 알고리즘의 교

Fig. 4. Structure of the fuzzy logic approach to the PCI [31]
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Fig. 5. The calculation process for the features of the convolutional layer [39]

Fig. 6. Comparison of original U-net and Dense U-net crack segmentation result. (a) Original Image (b) Ground Truth (c) U-net (d)
Dense U-net [44]
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량 상판 균열 감지 성능을 평가하는 선행 논문에 의하면,
YOLOv7은 Faster RCNN-ResNet101과 Retina Net-ResNet
101 보다 처리 속도가 각각 8.2배, 3배 빨랐으며, MAP@0.5,
Map(0.5.0.95) 평가 지표에서 더 우수한 검사 결과를 보고
한 바 있다[60]. 최근에는 ViT 와 같은 주의(attention) 기반
모델이 도입되어 이미지 전체의 장거리 의존성(long-range
dependency)을 고려한 균열 패턴 인식이 가능해졌다[3]. 이
러한 모델들은 불균일한 조명, 표면 노이즈, 미세 섬유의 질
감에 의한 혼선을 효과적으로 억제할 수 있다. 한편, 생성
적 적대 신경망(GAN) 및 확산모델(Diffusion Model) 과 같
은 생성형 AI 기법은 손상 영역의 복원(Predictive Healing)
이나 시멘트 복합체의 열화 과정을 시뮬레이션하는 연구
에도 활용되고 있다[61,62]. 이와 함께 전이학습(Transfer
Learning) 과 데이터 증강(Data Augmentation) 기법을 통해
다양한 환경 조건에서의 일반화 성능을 확보하고, 학습 데
이터의 부족 문제를 완화하고 있다[43,63]. 
손실함수(Loss function)는 인공지능 모델에서 발생하는
오차를 보정하여, 보다 정확한 검사 결과를 제공한다[35,65].
알고리즘은 데이터를 처리하는 과정에서 오차가 발생하여,
이를 해결하기 위한 보정 도구가 필요하다. 손실함수는 인
공지능 모델의 학습 과정에서 오차가 발생한 원인을 정확
히 분석하고, 이를 수정하여 검사 성능 증강에 기여한다[66].
Focal Loss는 대표적인 손실함수로 Retina Net에서 주로 사
용한다[53]. Focal Loss는 상대적으로 처리하기 쉬운 배경 샘
플보다 처리하기 어려운 균열 부위 샘플에 초점을 맞추어
학습 과정에서 발생하는 오차 손실을 줄인다[54].
모듈은 인공지능 모델에 추가적인 정보를 제공하여, 알
고리즘의 검사 성능을 보강한다. MDM 모듈의 경우, 이미
지의 크기를 조정하여 알고리즘에게 다양한 형태의 균열
이미지를 제공한다[67]. 이는, 균열 검출 과정에서 발생하
는 편향성 문제를 해결할 수 있다[68]. SCSE 모듈은 균열 부
위에 초점을 맞추어 효율적인 데이터 추출이 가능하다[69,70].
SCSE 모듈의 Channel SE가 균열의 색깔 질감에 관한 특징
을 강조하고, SC가 균열의 위치에 관한 정보를 제공한다[71].
ASPP 모듈은 여러 가지 필터를 적용하여, 다양한 범위의
균열 파악이 가능하다고 보고된 바 있다[72,73]. ASPP 모듈
을 인공지능 모델에 적용하여, 균열을 분류하는 과정에서
발생하는 시간 지연 현상을 생략할 수 있으며 보다 효율적
인 검사가 가능하다[74]. 또한, 새로운 모듈이 기존 모듈을
보강하는 사례가 존재한다. SSE 모듈은 기존 SWT 모듈에
서 발생하는 복잡한 계산 과정과 추론 시간을 줄일 수 있
다[75].
확률적 경사 하강법(SGD), 적용적 모먼트 추정법(ADAM),
분리 정규화를 활용한 모먼트 추정법(AdamW)을 비롯한
최적화 프로그램이 인공지능 모델에서 사용 중이다. 인공
지능 모델은 균열을 예측하는 과정에서 오차가 발생하여
이를 수정하기 위한 방법이 필요하다. SGD는 오차가 커진

부위와 적은 부위를 구분하고, 손실이 적은 부위에 가중치
를 조정한다[76]. 오차가 적은 부위에 가중치를 할당하여
계산 과정에서의 실수가 줄고 이는 예측 성능 향상에 기여
한다[77,78]. ADAM은 알고리즘이 균열의 형태적 특징을 학
습할 때 적용 가능하다[79,80]. 균열의 길이, 크기를 비롯한
형태적 정보를 추출하고, 이를 검사 과정에 반영하여 데이
터를 처리한다[81,82]. 그러나, 균열의 특징을 검사하는 과
정에서 변화가 크거나 분류가 어려운 균열을 잘 감지하는
못하는 문제가 존재한다. 이러한 문제를 해결하기 위해,
AdamW이 대안으로 등장하였다. AdamW는 ADAM에서 발
생하는 과적합 문제(Overfitting issue)를 보완할 수 있다[70].
ADAM은 기존 학습 데이터에 의존하여 새로운 정보를 부
여했을 때 검사 성능이 감소하는 현상이 발생한 반면, AdamW
에서는 이러한 문제를 방지하기 위해, 가중치를 조정하는
정규화 과정을 진행한다[82,83].

5. 데이터셋 구축 및 학습 파이프라인

AI 기반 균열 검출의 성능을 좌우하는 가장 중요한 요인
은 데이터셋의 품질과 다양성이다. 일반적으로 균열 검출
용 데이터는 실험실 기반 영상과 현장 기반 영상으로 나눌
수 있다[86]. 실험실 영상은 제어된 조명, 배경, 균열 폭(0.05~1
mm)의 인위적 시편을 촬영하여 고정밀 라벨링이 가능하
다. 반면 현장 영상은 교량, 터널, 해안구조물 등 실제 구
조물 표면에서 드론 또는 모바일 장치를 이용해 촬영되며,
다양한 조도 및 오염 조건을 반영한다. AI 학습 파이프라
인은 일반적으로 (1) 데이터 수집, (2) 전처리 및 라벨링,
(3) 학습 및 검증 분할, (4) 모델 훈련, (5) 성능 평가 단계로 구
성된다[87]. 모델의 성능 평가는 F1-score, IoU(Intersection over
Union), mAP(mean Average Precision) 등의 지표로 수행되며
각 지표는 균열의 위치 및 면적 검출 정확도를 정량적으로 비
교할 수 있게 한다[88]. 최근에는 개방형 데이터셋(CrackForest,
SDNET2018, DeepCrack 등)을 활용하여 모델의 재현성을
확보하고, 시멘트 복합체의 특성에 맞는 맞춤형 데이터셋
구축이 활발히 진행 중이다[89].
인공지능 모델에서 사용하는 평가지표는 TP, TN, FP, FN
에 따른 정확도, 정밀도, 재현율을 기준으로 식을 산정한다
[35]. 먼저, TP는 실제 값이 참이고, 이를 참이라고 식별한
경우를 의미한다. 예로, 균열을 포함하고 있는 이미지가 존
재하고 어떠한 알고리즘이 이를 균열이 존재한다고 판단
하였을 경우가 TP에 해당한다. TN은 실제도 거짓이고, 알
고리즘도 거짓이라고 판단한 경우를 의미한다. 어떠한 균
열이 존재하는 이미지가 존재하고, 알고리즘이 이를 균열
존재하지 않다고 판단한 경우가 TN에 해당한다. FP는 실
제는 거짓이지만, 이를 참이라고 결론 지은 경우다. FN은
실제는 참이지만, 이를 거짓이라고 오인하는 경우를 의미
한다. 정확도는 알고리즘이 산출한 결과 중, 실제 정답을 도
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출한 경우의 비율을 의미한다. 알고리즘이 실제 정답을 얼
마나 정확히 분석하는지 판단하기 위해서는 정확도를 확
인해야 한다. 정밀도는 알고리즘이 균열이 존재한다고 판
단한 값 중 실제로 균열이 존재하는 경우가 차지하는 비율
이다. 재현율은 실제 균열이 존재하는 경우 중, 알고리즘이
균열이 존재한다고 판정한 비율을 의미한다. 현재, 가장 많
이 사용하고 있는 평가지표는 AP, PA, mAP, mPA 총 4가지
가 있다. 먼저, AP는 정밀도와 재현율을 기반한 PR 곡선을
통해, 검출 성능을 평가한다. 알고리즘은 정밀도를 높이기
위해 균열의 존재 확률이 높은 이미지만 선별하는 경향이
있다. 따라서, 정밀도가 상승하면 재현율이 낮아지는 현상
이 발생하는데, PR곡선은 이러한 정밀도와 재현율의 반비
례 관계를 기반하여 나타낸 곡선이다[90]. PR 곡선 그래프
의 면적이 클수록, 알고리즘이 가진 검출 성능이 우수함을
의미하고, 이를 평가한 지표가 AP다. PA는 알고리즘이 분
류한 전체 픽셀 중 정답을 표기한 픽셀 수가 차지한 비율을
나타내는 지표로, PA값이 클수록, 알고리즘의 성능이 우수
하다[91]. mAP, mPA는 각각 전체 AP, PA의 평균값을 의미
한다.
최근, AP, PA 이외에도 IOU, FWIOU, 그리고 HD가 알고
리즘의 성능 평가에 쓰이고 있다. 인공지능 모델은 데이터
를 처리할 때, 이미지를 픽셀 단위로 분석한다. 이때, 인공
지능 모델이 균열이라고 평가한 픽셀과 실제 균열 픽셀은
다를 수 있다. IOU는 알고리즘이 인식한 균열 부위 픽셀과
실제 균열 픽셀을 비교하여 성능을 평가한다[92]. IOU는 두
픽셀의 겹침 정도를 교집합으로 정의하고, 이를 총 픽셀을
의미하는 합집합으로 나누어 정규화 과정을 거쳐 0과 1 사
이 값으로 표현한다[93]. 실제 균열을 의미하는 픽셀과 알
고리즘이 평가한 픽셀이 겹치는 비율이 높을수록 알고리
즘의 성능이 우수하다고 할 수 있다. IOU값이 1에 가까울
수록, 이는 성능이 우수한 알고리즘임을 뜻하며, 0에 가까
울수록 성능이 우수하지 못함을 의미한다. FWIOU는 IOU
가 산출한 각 클래스의 빈도수로 가중 평균한 값으로, IOU
가 산정한 값들 중 빈도가 높은 부위에 가중치를 부여한다
[94]. IOU가 값을 산정할 때, 배경이 균열과 비교하였을 때
차지하는 비율로 인해 불균형 문제가 발생할 수 있는데,
FWIOU를 도입하여 이를 해결할 수 있다[95]. 하우스도르
프 거리(Hausdorff Distance, HD)는 인공지능 모델이 예측
한 균열 위치와 실제 균열 위치를 비교한 평가 지표이다. 먼
저 알고리즘이 예측한 균열 지점들과, 실제 균열 위치를 선
으로 표현한다[96]. 그리고, 균열 예측 선 위의 점들 중 실
제 균열 위치 점에 가장 가까운 지점 사이의 거리와 실제 균
열 위치 선 위의 점들 중 균열 예측 지점 중 가장 가까운 거
리를 비교하여 그 중 큰 값을 차용한다[97]. 인공지능 모델
을 평가할 때 HD를 도입하면, 알고리즘이 검출한 결과 중
최악 구간을 분석할 수 있다.

6. 응용 가능 분야 및 향후 연구

앞서 언급한 바와 같이 AI 기반 균열 검출 기술은 단순한
손상 탐지 단계를 넘어, 구조물의 유지관리 및 수명 예측 시
스템으로 확장되고 있다.
첫째, 교량 및 터널의 유지관리 분야에서는 드론을 이용
한 영상 취득과 AI 분석을 결합함으로써 대규모 구조물에
대한 자동 점검, 균열 분포의 정량화, 그리고 손상지도 생
성이 가능하다. 다만, 이러한 딥러닝 기반 결과는 판단 근
거가 명확히 제시되지 않는 경우가 많아, 실제 유지관리 의
사결정에 활용하기 위해서는 예측 결과의 해석가능성 확
보가 중요한 과제로 남아 있다. 이에 따라 향후 연구에서는
attention map, Grad-CAM 등 설명가능 인공지능(XAI) 기법
을 도입하여, 균열 판단의 물리적·구조공학적 의미를 시각
적으로 설명하는 방향으로의 확장이 요구된다.
둘째, 재료 개발 측면에서는 섬유보강 시멘트 복합체(Fiber-

Reinforced Cementitious Composites, FRCC)의 균열 제어
메커니즘을 정량적으로 평가하고, 섬유의 분포, 길이, 함량
에 따른 미세균열 억제 효과를 영상 기반으로 시각화 할 수
있다. 이 과정에서 AI 모델이 추출한 특징과 기존 재료역학
적 손상 지표 간의 연계를 강화함으로써, 데이터 기반 분석
결과의 해석 신뢰성을 향상시킬 필요가 있다.
셋째, 디지털 트윈(Digital Twin) 기술과의 융합을 통해 영
상 기반 균열 데이터가 가상 구조물 모델과 연동되어 수명
예측, 손상 진전 시뮬레이션, 보수·보강 전략 결정 등에 활
용될 수 있다. 그러나 이러한 실시간 연계 시스템의 구현을
위해서는 고성능 딥러닝 모델의 연산 부담을 완화하는 경
량화(lightweight) 기술이 필수적이다. 향후에는 모델 pruning,
양자화, 지식 증류 등의 기법을 적용하여 드론, 로봇, 모바
일 장비에서도 실시간 균열 검출이 가능한 경량 AI 모델 개
발이 중요한 연구 방향이 될 것이다.
넷째, AI 기반 균열 검출 기술은 기존 시멘트 복합체의 균
열 치유 기전을 보강하는 도구로도 활용될 수 있다. 예를 들
어, MICP(Microbial-Induced Calcium Carbonate Precipitation)
는 미생물에 의해 탄산칼슘을 침전시켜 균열을 자가 치유
하는 기술로, AI 모델을 활용하면 균열 치유 전·후의 변화
양상을 정량적으로 비교·평가할 수 있다. 이를 통해 자가 치
유 성능의 시공 조건 의존성이나 시간에 따른 회복 거동을
보다 정밀하게 분석할 수 있다.
향후에는 물리 기반 모델과 다중 센서 융합을 결합하여
영상, 음향, 전기적 신호를 통합 분석하는 고도화된 손상 진
단 플랫폼이 개발될 것으로 전망된다. 이러한 기술적 진보
를 실현하기 위해서는 무엇보다도 균열 데이터의 체계적
인 확보와 관리가 선행되어야 한다. 균열 이미지의 에포크

(epoch) 수가 증가할수록 인공지능 모델의 검출 성능이 향
상되는 경향이 보고되고 있으며, 실제로 에포크 증가에 따
라 YOLOv5의 F1-score와 정밀도가 향상된 선행 연구 사례
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가 존재한다[99]. 따라서 균열 이미지의 지속적인 수집, 표
준화, 전이 학습을 고려한 데이터 구축 전략이 향후 AI 기
반 균열 진단 기술의 신뢰성과 실용성을 좌우하는 핵심 요
소가 될 것으로 판단된다.

7. 결 론

본 연구에서는 시멘트 복합체의 균열 검출 및 평가를 위
한 이미지 프로세싱과 인공지능 기술의 최신 동향을 종합
적으로 고찰하였다. 전통적 영상처리 기법은 여전히 전처
리 및 기본 검출 단계에서 유용하지만, 복잡한 표면 상태나
조명 환경에서는 한계가 명확하다. 이에 비해 딥러닝 기반
AI 기술은 높은 검출 정확도와 자동화를 달성하여, 균열의
위치·폭·형태를 정량적으로 분석하는 데 탁월한 성능을 보
였다. 특히 ViT, GAN, Diffusion Model 등 차세대 AI 기법은
단순 검출을 넘어 손상 복원과 수명예측에까지 응용될 가
능성을 제시하고 있다. 다만, 데이터셋의 표준화 부족, 모
델의 해석가능성(interpretability) 문제, 현장 실시간 적용을
위한 경량화(lightweight) 등은 여전히 해결해야 할 과제로
남아 있다. 향후 연구에서는 다양한 환경조건을 반영한 대
규모 균열 영상 데이터 구축, 다중센서 융합 기반 AI 모델
개발, 그리고 디지털 트윈과 연계된 자율 유지관리 시스템
구현이 시멘트 복합체 분야의 핵심 연구방향이 될 것이다. 또
한, SOC 구조물의 향후 유지관리의 중요성이 증가한 만큼,
현재 균열에 대한 보수와 데이터 수집이 매우 중요할 것으
로 판단된다. 구조물 뿐만 아니라, 수집한 균열 데이터에 대
한 관리와 정립이 필요하고, 이러한 기반 시설에 대한 필요
성이 대두된다. 이러한 기술적 진보는 궁극적으로 시멘트
복합체 구조물의 안전성 향상과 지속가능한 인프라 관리
체계 확립에 기여할 것으로 기대된다.
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